Accelerans nerve

Last updated

Accelerans nerve forms a part of the sympathetic branch of the autonomic nervous system, and its function is to release noradrenaline at its endings on the heart. The heart beats according to a rhythm set up by the sinus-atrial node or pacemaker, which is located on the right atrium of the heart. It is acted on by the nervous system, as well as hormones in the blood, and venous return: the amount of blood being returned to the heart. The two nerves acting on the heart are the vagus nerve, which slows heart rate down by emitting acetylcholine, and the accelerans nerve which speeds it up by emitting noradrenaline. [1] [2] This results in an increased blood flow, preparing the body for a sudden increase in activity. [3] [4] [5] These nerve fibres are part of the autonomic nervous system, part of the 'fight or flight' system.

Contents

Right where the sinus-atrial node is, the negative charge of the interior of the fibres of heart muscles breaks down spontaneously the cells in the pacemaker about 70 minutes each time. [6] As a result of this, a small current sweeps over the atria, which then reaches the insulating connective tissue between the atria and ventricles. When the current reaches this part, the atrio-ventricular node picks it up, thus creating the rhythm of the heartbeats through the rate and strength of each palpitation which is controlled by the accelerans nerve. [2] [4]

History and etymology

The accelerans nerve was first discovered on April 23, 1883 by German medical students L.C. Wooldridge, D.S and George Henry Lewes, M.B. [5] Both medical students conducted their investigation in the Physiological Institute of Leipzig. The purpose of the investigation which yielded the finding of the accelerans nerve was to learn more about the function of the nerves which can be observed in the surface of the ventricles of mammalian hearts. [5] [6] In their findings, both researches saw that there was an increase in cardiovascular acceleration due to stimulation of the accelerans nerve found in the ventricles of the mammals they studied. [5] [7] In Aug 1950, medical researcher O. Krayer confirmed that through electrical stimulations of the accelerans nerve, the force of heart palpitations could be increased which increases blood flow throughout the body, rightly solidifying the importance of this nerve as well as what its manipulation could lead to. [8] More recently, on 24 Feb 2000, the New England Journal of Medicine released a study which revealed the existence of a mutant gene that leads to the development of a transporter that is in charge of the reuptake of noradrenaline back to the accelerans nerve.

The term accelerans comes from the latin word accelerrō which means "quickening" or "to hasten". The term nerve comes from the latin words nervus which meant sinew or tendon in an animal body.

Measurements in mammals

The majority of research regarding the accelerans nerve has been centered around other mammals part from humans. The first study ever conducted on accelerans nerve on April 23, 1883 necessitated other mammals apart from humans, not only due to ethical concerns, but in order to visualize the difference in their stimulation depending on the mammal. [5] The following is a list of mammals who have been used for research into the accelerans nerve and what results were found from the studies:

Dogs

In the case of dogs, the first case ever mentioned regarding the accelerans nerve and its function in 1883 yielded that the investigation in dogs was done almost exclusively on the right side of the nerves. [5] The reason for this was that researches saw that any sort of stimulation on the left side showed no significant impact to the rhythm of the heart. Also, the researchers observed that even after death, any manipulation of the accelerans nerve, or any other neighbouring nerves, caused a reflex movement from the dogs, underlying the significance of its function in the heart. Furthermore, one study conducted in January 1988 found that even through chronic administration of betaxolol (1 mg kg-1 daily, s.c.) for 7 days, which is a drug used to relax blood vessels and slowing down heart rate, in vivo stimulation of the accelerans nerve demonstrated a significant increase in the production of noradrenaline. [9] These results indicated that in medical situations in which the rate and strength of a patient's heartbeats reaches critically low levels, stimulation of the accelerans nerve allows for a more expeditious way to gain the heart's vitality back, analogous to the function of artificial pacemakers.

Cats

In the case of cats, stimulation of the accelerans nerve was found to produce a much more significant effect on their heart rates compared to the hormones secreted by the adrenals glands in the autonomic-nervous system for the fight-or-flight response. [10] Moreover, the vigorous heart palpitations induced by the accelerans nerve in the hearts of cats seem to disappear quickly after a low-frequency stimulation is applied to the nerves. [2] [5] [10] This quick shift in the heart rate resulted in the idea that decreases of stroke volume in humans requires direct vagal control of the heart ventricles.

Rabbit

In the case of rabbits, a study conducted in December 1973 directly administered certain substances to slow down the heart rate ranging from fentanyl to morphine (at concentrations of 10-100μM) in order to observe the heart's natural secretion of noradrenaline in the case of critically low heart rates. [11] Every single drug given to the rabbits, except for naloxone, led to a diminished amount of neuronal uptake of noradrenaline. However, researchers observed that all the substances administered directly into the rabbits' hearts led to an increase in the secretion of noradrenaline due to the stimulation of the accelerans nerve by 5 hertz. In another case, it was observed that acidic substances, specifically acetic acid, when exposed to the accelerans nerve in rabbit hearts led to an increase in blood pressure due to the nerve's reaction with the acid which made it send out stronger signals.

See also

Related Research Articles

<span class="mw-page-title-main">Bradycardia</span> Heart rate below the normal range

Bradycardia is a medical term used to describe a resting heart rate under 60 beats per minute (BPM). While bradycardia can result from a variety of pathologic processes, it is commonly a physiologic response to cardiovascular conditioning, or due to asymptomatic type 1 atrioventricular block. Resting heart rates less than 50 BPM are often normal during sleep in young and healthy adults, and in athletes. In large population studies of adults without underlying heart disease, resting heart rates of 45-50 BPM appear to be the lower limits of normal, dependent on age and sex. Bradycardia is most likely to be discovered in the elderly, as both age and underlying cardiac disease progression contribute to its development.

<span class="mw-page-title-main">Heart</span> Organ found inside most animals

The heart is a muscular organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as carbon dioxide to the lungs. In humans, the heart is approximately the size of a closed fist and is located between the lungs, in the middle compartment of the chest, called the mediastinum.

<span class="mw-page-title-main">Tachycardia</span> Heart rate exceeding normal resting rate

Tachycardia, also called tachyarrhythmia, is a heart rate that exceeds the normal resting rate. In general, a resting heart rate over 100 beats per minute is accepted as tachycardia in adults. Heart rates above the resting rate may be normal or abnormal.

<span class="mw-page-title-main">Parasympathetic nervous system</span> Division of the autonomic nervous system

The parasympathetic nervous system (PSNS) is one of the three divisions of the autonomic nervous system, the others being the sympathetic nervous system and the enteric nervous system. The enteric nervous system is sometimes considered part of the autonomic nervous system, and sometimes considered an independent system.

<span class="mw-page-title-main">Systole</span> Part of the cardiac cycle when a heart chamber contracts

Systole is the part of the cardiac cycle during which some chambers of the heart contract after refilling with blood.

<span class="mw-page-title-main">Heart rate</span> Speed of the heartbeat, measured in beats per minute

Heart rate is the frequency of the heartbeat measured by the number of contractions of the heart per minute. The heart rate at which it can vary according to the body's physical needs, including the need to absorb oxygen and excrete carbon dioxide, but is also modulated by numerous factors, including genetics, physical fitness, stress or psychological status, diet, drugs, hormonal status, environment, and disease/illness as well as the interaction between and among these factors. It is usually equal or close to the pulse measured at any peripheral point.

<span class="mw-page-title-main">Sinoatrial node</span> Group of cells located in the wall of the right atrium of the heart

The sinoatrial node is an oval shaped region of special cardiac muscle in the upper back wall of the right atrium made up of cells known as pacemaker cells. The sinus node is approximately 15 mm long, 3 mm wide, and 1 mm thick, located directly below and to the side of the superior vena cava.

<span class="mw-page-title-main">Cardiac conduction system</span> Aspect of heart function

The cardiac conduction system transmits the signals generated by the sinoatrial node – the heart's pacemaker, to cause the heart muscle to contract, and pump blood through the body's circulatory system. The pacemaking signal travels through the right atrium to the atrioventricular node, along the bundle of His, and through the bundle branches to Purkinje fibers in the walls of the ventricles. The Purkinje fibers transmit the signals more rapidly to stimulate contraction of the ventricles.

<span class="mw-page-title-main">Cardiac action potential</span> Biological process in the heart

The cardiac action potential is a brief change in voltage across the cell membrane of heart cells. This is caused by the movement of charged atoms between the inside and outside of the cell, through proteins called ion channels. The cardiac action potential differs from action potentials found in other types of electrically excitable cells, such as nerves. Action potentials also vary within the heart; this is due to the presence of different ion channels in different cells.

<span class="mw-page-title-main">AV nodal reentrant tachycardia</span> Medical condition

AV-nodal reentrant tachycardia (AVNRT) is a type of abnormal fast heart rhythm. It is a type of supraventricular tachycardia (SVT), meaning that it originates from a location within the heart above the bundle of His. AV nodal reentrant tachycardia is the most common regular supraventricular tachycardia. It is more common in women than men. The main symptom is palpitations. Treatment may be with specific physical maneuvers, medications, or, rarely, synchronized cardioversion. Frequent attacks may require radiofrequency ablation, in which the abnormally conducting tissue in the heart is destroyed.

<span class="mw-page-title-main">Atrium (heart)</span> Part of the human heart

The atrium is one of the two upper chambers in the heart that receives blood from the circulatory system. The blood in the atria is pumped into the heart ventricles through the atrioventricular mitral and tricuspid heart valves.

<span class="mw-page-title-main">Cardiac cycle</span> Performance of the human heart

The cardiac cycle is the performance of the human heart from the beginning of one heartbeat to the beginning of the next. It consists of two periods: one during which the heart muscle relaxes and refills with blood, called diastole, following a period of robust contraction and pumping of blood, called systole. After emptying, the heart relaxes and expands to receive another influx of blood returning from the lungs and other systems of the body, before again contracting to pump blood to the lungs and those systems. A normally performing heart must be fully expanded before it can efficiently pump again. Assuming a healthy heart and a typical rate of 70 to 75 beats per minute, each cardiac cycle, or heartbeat, takes about 0.8 second to complete the cycle.

The Bainbridge reflex or Bainbridge effect, also called the atrial reflex, is an increase in heart rate due to an increase in central venous pressure. Increased blood volume is detected by stretch receptors located in both sides of atria at the venoatrial junctions.

<span class="mw-page-title-main">Wandering atrial pacemaker</span> Medical condition

Wandering atrial pacemaker (WAP) is an atrial rhythm where the pacemaking activity of the heart originates from different locations within the atria. This is different from normal pacemaking activity, where the sinoatrial node is responsible for each heartbeat and keeps a steady rate and rhythm. Causes of wandering atrial pacemaker are unclear, but there may be factors leading to its development. It is often seen in the young, the old, and in athletes, and rarely causes symptoms or requires treatment. Diagnosis of wandering atrial pacemaker is made by an ECG.

<span class="mw-page-title-main">Ectopic pacemaker</span> Cardiac condition

An ectopic pacemaker, also known as ectopic focus or ectopic foci, is an excitable group of cells that causes a premature heart beat outside the normally functioning SA node of the heart. It is thus a cardiac pacemaker that is ectopic, producing an ectopic beat. Acute occurrence is usually non-life-threatening, but chronic occurrence can progress into tachycardia, bradycardia or ventricular fibrillation. In a normal heart beat rhythm, the SA node usually suppresses the ectopic pacemaker activity due to the higher impulse rate of the SA node. However, in the instance of either a malfunctioning SA node or an ectopic focus bearing an intrinsic rate superior to SA node rate, ectopic pacemaker activity may take over the natural heart rhythm. This phenomenon is called an escape rhythm, the lower rhythm having escaped from the dominance of the upper rhythm. As a rule, premature ectopic beats indicate increased myocyte or conducting tissue excitability, whereas late ectopic beats indicate proximal pacemaker or conduction failure with an escape 'ectopic' beat.

Low pressure baroreceptors are baroreceptors that relay information derived from blood pressure within the autonomic nervous system. They are stimulated by stretching of the vessel wall. They are located in large systemic veins and in the walls of the atria of the heart, and pulmonary vasculature. Low pressure baroreceptors are also referred to as volume receptors and cardiopulmonary baroreceptors.

<span class="mw-page-title-main">Arrhythmia</span> Group of medical conditions characterized by irregular heartbeat

Arrhythmias, also known as cardiac arrhythmias, heart arrhythmias, or dysrhythmias, are irregularities in the heartbeat, including when it is too fast or too slow. A resting heart rate that is too fast – above 100 beats per minute in adults – is called tachycardia, and a resting heart rate that is too slow – below 60 beats per minute – is called bradycardia. Some types of arrhythmias have no symptoms. Symptoms, when present, may include palpitations or feeling a pause between heartbeats. In more serious cases, there may be lightheadedness, passing out, shortness of breath, chest pain, or decreased level of consciousness. While most cases of arrhythmia are not serious, some predispose a person to complications such as stroke or heart failure. Others may result in sudden death.

Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.

<span class="mw-page-title-main">Heart development</span> Prenatal development of the heart

Heart development, also known as cardiogenesis, refers to the prenatal development of the heart. This begins with the formation of two endocardial tubes which merge to form the tubular heart, also called the primitive heart tube. The heart is the first functional organ in vertebrate embryos.

Accelerator nerve are cardiopulmonary splanchnic nerves that allows the sympathetic nervous system's stimulation of the heart. They originate from the ganglion cells of the superior, middle, and inferior cervical ganglion of the sympathetic trunk. The accelerator nerves increases the heart rate. It causes the heart to beat with more force, which then increases blood pressure.

References

  1. Balon, Richard (2006-09-01). "A Review of: "In Search of Memory. The Emergence of a New Science of Mind"". Annals of Clinical Psychiatry. 18 (4): 279–280. doi:10.1080/10401230600948670. ISSN   1040-1237.
  2. 1 2 3 "What is Physiology?". Animal Physiology: 1–2. 1997-04-10. doi:10.1017/9780511801822.003. ISBN   978-0-511-80182-2.
  3. "The Open Door Web Site : Major Factors Controlling the Heartbeat". Archived from the original on 29 December 2018. Retrieved 25 October 2019.
  4. 1 2 In Search of Memory: The Emergence of a New Science of Mind - Eric R. Kandel Google Books
  5. 1 2 3 4 5 6 7 Wooldridge, L.C. (1883). "Preliminary Note on the Innervation of the Mammalian Heart". Proceedings of the Royal Society of London. 35: 226–229. Bibcode:1883RSPS...35..226W. JSTOR   114374.
  6. 1 2 "15.3C: The Heartbeat". Biology LibreTexts. 2016-07-13. Retrieved 2023-04-21.
  7. Langer, S.Z (17 December 1981). "Presence and physiological role of presynaptic inhibitory a2-adrenoreceptors in guinea pig atria" (PDF). Nature. 294 (5842): 671–672. doi:10.1038/294671a0. PMID   6273755 via Macmillan Journals Ltd.
  8. Krayer, O. (1950). "Studies on veratrum alkaloids. XI. Jervine and pseudojervine, antagonists to the cardioaccelerator action of epinephrine and of accelerans stimulation". J Pharmacol Exp Ther. 4 (1): 422–37. PMID   18137898 via PubMed.
  9. Palmina, Petruzzo (1988-01-01). "The beta 1-adrenoceptor antagonist, betaxolol, is not released from the heart of the anaesthetized dog during sympathetic nerve stimulation". British Journal of Pharmacology. 95 (3): 683–688. doi:10.1111/j.1476-5381.1988.tb11693.x. PMC   1854218 . PMID   2905183 via University of Cagliari.
  10. 1 2 Folkow, Björn; Löfving, Birger; Mellander, Stefan (December 1956). "Quantitative Aspects of the Sympathetic Neuro-hormonal Control of the Heart Rate". Acta Physiologica Scandinavica. 37 (4): 363–369. doi:10.1111/j.1748-1716.1956.tb01372.x. PMID   13372369 via Wiley Online Library.
  11. Montel, H.; Starke, K. (December 1973). "Effects of narcotic analgesics and their antagonists on the rabbit isolated heart and its adrenergic nerves". British Journal of Pharmacology. 49 (4): 628–641. doi:10.1111/j.1476-5381.1973.tb08538.x. PMC   1776589 . PMID   4788036.