ACOT9 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | ACOT9 , ACATE2, MT-ACT48, MTACT48, CGI-16, Acyl-CoA thioesterase 9 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 300862; MGI: 1928939; HomoloGene: 8206; GeneCards: ACOT9; OMA:ACOT9 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Acyl-CoA thioesterase 9 is a protein that is encoded by the human ACOT9 gene. It is a member of the acyl-CoA thioesterase superfamily, which is a group of enzymes that hydrolyze Coenzyme A esters. There is no known function, however it has been shown to act as a long-chain thioesterase at low concentrations, and a short-chain thioesterase at high concentrations. [5]
The ACOT9 gene is located at p22.11 on chromosome X. Located on the minus strand of the chromosome, the start is at 23,721,777 bp and the end is at 23,761,407 bp, which is a span of 39,631 base pairs. [6]
ACOT9 gene is known primarily for encoding the Acyl-CoA thioesterase 9 protein. Other, less commonly used names for the gene are ACATE2, [7] and MT-ACT48. [8]
The protein encoded by the ACOT9 gene is part of a family of Acyl-CoA thioesterases, which catalyze the hydrolysis of various Coenzyme A esters of various molecules to the free acid plus CoA. These enzymes have also been referred to in the literature as acyl-CoA hydrolases, acyl-CoA thioester hydrolases, and palmitoyl-CoA hydrolases. The reaction carried out by these enzymes is as follows:
CoA ester + H2O → free acid + coenzyme A
These enzymes use the same substrates as long-chain acyl-CoA synthetases, but have a unique purpose in that they generate the free acid and CoA, as opposed to long-chain acyl-CoA synthetases, which ligate fatty acids to CoA, to produce the CoA ester. [9] The role of the ACOT- family of enzymes is not well understood; however, it has been suggested that they play a crucial role in regulating the intracellular levels of CoA esters, Coenzyme A, and free fatty acids. Recent studies have shown that Acyl-CoA esters have many more functions than simply an energy source. These functions include allosteric regulation of enzymes such as acetyl-CoA carboxylase, [10] hexokinase IV, [11] and the citrate condensing enzyme. Long-chain acyl-CoAs also regulate opening of ATP-sensitive potassium channels and activation of Calcium ATPases, thereby regulating insulin secretion. [12] A number of other cellular events are also mediated via acyl-CoAs, for example signal transduction through protein kinase C, inhibition of retinoic acid-induced apoptosis, and involvement in budding and fusion of the endomembrane system. [13] [14] [15] Acyl-CoAs also mediate protein targeting to various membranes and regulation of G Protein α subunits, because they are substrates for protein acylation. [16] In the mitochondria, acyl-CoA esters are involved in the acylation of mitochondrial NAD+ dependent dehydrogenases; because these enzymes are responsible for amino acid catabolism, this acylation renders the whole process inactive. This mechanism may provide metabolic crosstalk and act to regulate the NADH/NAD+ ratio in order to maintain optimal mitochondrial beta oxidation of fatty acids. [17] The role of CoA esters in lipid metabolism and numerous other intracellular processes are well defined, and thus it is hypothesized that ACOT- enzymes play a role in modulating the processes these metabolites are involved in. [18]
There are many orthologs of ACOT9, the house mouse (Mus musculus) being one of the most similar, where the ACOT9 gene is found at 72.38cM on chromosome X. [19] The range of orthologs extends to mammals, birds, amphibians, anamorphic fungi, and others.[ citation needed ]
Sequence number | Genus and species | Common name | Date of divergence (MYA) | Accession number | Sequence length | Sequence identity | Sequence similarity | Notes |
---|---|---|---|---|---|---|---|---|
1 | Homo sapiens | Human | 0 | NP_001028755.2 | 439 | 100% | 100% | Human |
2 | Mus musculus | House mouse | 91 | NP_062710.2 | 439 | 83% | 90% | Rodent |
3 | Pteropus alecto | Black flying fox | 97.4 | XP_006911668.1 | 480 | 81% | 91% | Bat |
4 | Gallus gallus | Chicken | 324.5 | NP_001012841.1 | 425 | 69% | 87% | Bird |
5 | Pseudopodoces humilis | Ground tit | 324.5 | XP_005516751.1 | 417 | 68% | 85% | Bird |
6 | Columba livia | Rock dove | 324.5 | XP_005503782.1 | 402 | 67% | 86% | Bird |
7 | Geospiza fortis | Medium ground finch | 324.5 | XP_005424946.1 | 417 | 67% | 85% | Bird |
8 | Pelodiscus sinensis | Chinese soft shelled turtle | 324.5 | XP_006112565.1 | 439 | 67% | 85% | Reptile |
9 | Xenopus tropicalis | Western clawed frog | 361.2 | AAI61600.1 | 418 | 65% | 82% | Amphibian |
10 | Danio rerio | Zebrafish | 454.6 | AAI59216.1 | 434 | 60% | 80% | Fish |
11 | Ceratitis capitata | Mediterranean fruit fly | 910 | JAB97119.1 | 433 | 32% | 58% | Insect |
12 | Glarea lozoyensis 74030 | Anamorphic fungus | 1368 | EHL00310.1 | 350 | 24% | 47% | Fungus |
In mice, which is one of the closest orthologs, ACOT10 is a known paralog of the ACOT9 gene. [20]
Expression of the ACOT9 is ubiquitous throughout the tissues in humans. Tissues with a value of over 500 in the large-scale analysis of the human transcriptome were the globus pallidus and colorectal adenocarcinoma. [21] The expressed sequence tag (or EST) abundance profile also shows ubiquitous/near ubiquitous, expression throughout human tissues. [22]
There are numerous transcription factors throughout the ACOT9 promoter sequence. Some of the notable factors are heat shock factors and transcription factor II B (TFIIB) recognition elements.[ citation needed ]
Transcription factor | Start | End | Strand | Sequence |
---|---|---|---|---|
X gene core promoter element 1 | 683 | 693 | - | ggGCGGgaccg |
Doublesex and mab-3 related transcription factor 1 | 81 | 101 | + | tttttttgagacaTTGTctcc |
cAMP-responsive element binding protein 1 | 491 | 511 | - | agggcgTGACgtcgagaagag |
Sp4 transcription factor | 660 | 676 | - | ccagggGGCGtggccgc |
Stimulating protein 1, ubiquitous zinc finger transcription factor | 682 | 698 | - | tccggGGGCgggaccgc |
Heat shock factor 1 | 24 | 48 | + | caggactaaactAGAAtctccagcc |
E2F transcription factor 2 | 808 | 824 | + | ccatcGCGCgcacggca |
Nuclear factor of activated T-cells 5 | 380 | 398 | + | tttGGAAagttgcccagga |
ZF5 POZ domain zinc finger, zinc finger protein 161 (secondary DNA binding preference) | 811 | 825 | + | tcgCGCGcacggcag |
B-cell-specific activator protein | 678 | 706 | - | cagcggtgtccgggGGCGggaccgcggcg |
Pax-6 paired domain binding site | 54 | 72 | + | gtctcAAGCatcagttttt |
ZF5 POZ domain zinc finger, zinc finger protein 161 (secondary DNA binding preference) | 651 | 665 | - | ggcCGCGctgtgccg |
Pax-6 paired domain binding site | 758 | 776 | + | ttttaTCGCctcagtttcc |
Mammalian C-type LTR TATA box | 751 | 767 | - | ggcgaTAAAagacgcac |
Nuclear factor Y (Y-box binding factor) | 624 | 638 | + | cccgCCAAtgaacgg |
Transcription factor II B (TFIIB) recognition element | 356 | 362 | + | ccgCGCC |
Transcription factor II B (TFIIB) recognition element | 440 | 446 | - | ccgCGCC |
Transcription factor II B (TFIIB) recognition element | 734 | 740 | - | ccgCGCC |
Nuclear factor Y (Y-box binding factor) | 581 | 595 | - | ccacTCAAtcagttg |
CCAAT/enhancer binding protein alpha | 529 | 543 | - | tcggttgaGTAAacg |
There are two regions in the ACOT9 gene sequence that are labeled as BFIT (Brown Fat Inducible Thioesterase) and BACH (Brain Acyl CoA Hydrolase) regions. These regions are part of a HotDog fold superfamily, which has been found to be used in a variety of cell roles. [23] Predictions show there to be various alpha-helices throughout the structure, [24] suggesting it is a transmembrane protein.
A mitochondrial cleavage site can be found at amino acid 30 in the ACOT9 sequence, and the probability of export to the mitochondria is 0.9374. [25] The Acyl-CoA thioesterase 9 protein is estimated to be 60.9% mitochondrial, 21.7% cytoplasmic, 8.7% nuclear, 4.3% in the plasma membrane, and 4.3% in the endoplasmic reticulum. [26]
The ACOT9 protein has been found to interact with the following proteins either experimentally or through co-expression: [27]
Very long-chain specific acyl-CoA dehydrogenase, mitochondrial (VLCAD) is an enzyme that in humans is encoded by the ACADVL gene.
ACADM is a gene that provides instructions for making an enzyme called acyl-coenzyme A dehydrogenase that is important for breaking down (degrading) a certain group of fats called medium-chain fatty acids.
In biochemistry, thioesterases are enzymes which belong to the esterase family. Esterases, in turn, are one type of the several hydrolases known.
Acyl-CoA dehydrogenase, C-2 to C-3 short chain is an enzyme that in humans is encoded by the ACADS gene. This gene encodes a tetrameric mitochondrial flavoprotein, which is a member of the acyl-CoA dehydrogenase family. This enzyme catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway. The ACADS gene is associated with short-chain acyl-coenzyme A dehydrogenase deficiency.
Palmitoyl-CoA hydrolase (EC 3.1.2.2) is an enzyme in the family of hydrolases that specifically acts on thioester bonds. It catalyzes the hydrolysis of long chain fatty acyl thioesters of acyl carrier protein or coenzyme A to form free fatty acid and the corresponding thiol:
Palmitoyl protein hydrolase/thioesterases is an enzyme (EC 3.1.2.22) that removes thioester-linked fatty acyl groups such as palmitate from modified cysteine residues in proteins or peptides during lysosomal degradation. It catalyzes the reaction
Long-chain-fatty-acid—CoA ligase 1 is an enzyme that in humans is encoded by the ACSL1 gene.
Acyl-coenzyme A thioesterase 8 is an enzyme that in humans is encoded by the ACOT8 gene.
Long-chain-fatty-acid—CoA ligase 5 is an enzyme that in humans is encoded by the ACSL5 gene.
Acyl-CoA thioesterase 2, also known as ACOT2, is an enzyme which in humans is encoded by the ACOT2 gene.
Very long-chain acyl-CoA synthetase is an enzyme that in humans is encoded by the SLC27A2 gene.
Cytosolic acyl coenzyme A thioester hydrolase is an enzyme that in humans is encoded by the ACOT7 gene.
Acyl-coenzyme A thioesterase 4 is an enzyme that in humans is encoded by the ACOT4 gene.
Acyl-coenzyme A thioesterase 11 also known as StAR-related lipid transfer protein 14 (STARD14) is an enzyme that in humans is encoded by the ACOT11 gene. This gene encodes a protein with acyl-CoA thioesterase activity towards medium (C12) and long-chain (C18) fatty acyl-CoA substrates which relies on its StAR-related lipid transfer domain. Expression of a similar murine protein in brown adipose tissue is induced by cold exposure and repressed by warmth. Expression of the mouse protein has been associated with obesity, with higher expression found in obesity-resistant mice compared with obesity-prone mice. Alternative splicing results in two transcript variants encoding different isoforms.
Isobutyryl-CoA dehydrogenase, mitochondrial is an enzyme that in humans is encoded by the ACAD8 gene on chromosome 11.
1-acylglycerol-3-phosphate O-acyltransferase ABHD5, also known as comparative gene identification-58 (CGI-58), is an enzyme that in humans is encoded by the ABHD5 gene.
Acyl-coenzyme A thioesterase 12 or StAR-related lipid transfer protein 15 (STARD15) is an enzyme that in humans is encoded by the ACOT12 gene. The protein contains a StAR-related lipid transfer domain.
Acyl-CoA thioesterase 6 is a protein that in humans is encoded by the ACOT6 gene. The protein, also known as C14orf42, is an enzyme with thioesterase activity.
Acyl-CoA thioesterase 13 is a protein that in humans is encoded by the ACOT13 gene. This gene encodes a member of the thioesterase superfamily. In humans, the protein co-localizes with microtubules and is essential for sustained cell proliferation.
Acyl-CoA thioesterase 1 is a protein that in humans is encoded by the ACOT1 gene.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.