Acyl-CoA hydrolase

Last updated
acyl-CoA hydrolase
Identifiers
EC no. 3.1.2.20
CAS no. 37270-64-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The enzyme acyl-CoA hydrolase (EC 3.1.2.20) catalyzes the reaction

acyl-CoA + H2O CoA + a carboxylate

This enzyme belongs to the family of hydrolases, specifically those acting on thioester bonds. The systematic name of this enzyme class is acyl-CoA hydrolase. Other names in common use include acyl coenzyme A thioesterase, acyl-CoA thioesterase, acyl coenzyme A hydrolase, thioesterase B, thioesterase II, and acyl-CoA thioesterase.

Structural studies

As of late 2007, two structures have been solved for this class of enzymes, with PDB accession codes 1Y7U and 2GVH.

Related Research Articles

Thioesterases are enzymes which belong to the esterase family. Esterases, in turn, are one type of the several hydrolases known.

Serine hydrolases are one of the largest known enzyme classes comprising approximately ~200 enzymes or 1% of the genes in the human proteome. A defining characteristic of these enzymes is the presence of a particular serine at the active site, which is used for the hydrolysis of substrates. The hydrolysis of the ester or peptide bond proceeds in two steps. First, the acyl part of the substrate is transferred to the serine, making a new ester or amide bond and releasing the other part of the substrate is released. Later, in a slower step, the bond between the serine and the acyl group is hydrolyzed by water or hydroxide ion, regenerating free enzyme. Unlike other, non-catalytic, serines, the reactive serine of these hydrolases is typically activated by a proton relay involving a catalytic triad consisting of the serine, an acidic residue and a basic residue, although variations on this mechanism exist.

The enzyme ADP-dependent medium-chain-acyl-CoA hydrolase (EC 3.1.2.19) catalyzes the reaction

The enzyme ADP-dependent short-chain-acyl-CoA hydrolase (EC 3.1.2.18) catalyzes the reaction

The enzyme choloyl-CoA hydrolase (EC 3.1.2.27) catalyzes the reaction

The enzyme dodecanoyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.21) catalyzes the reaction

The enzyme oleoyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14) catalyzes the reaction

Palmitoyl-CoA hydrolase (EC 3.1.2.2) is an enzyme in the family of hydrolases that specifically acts on thioester bonds. It catalyzes the hydrolysis of long chain fatty acyl thioesters of acyl carrier protein or coenzyme A to form free fatty acid and the corresponding thiol:

<span class="mw-page-title-main">Palmitoyl(protein) hydrolase</span>

Palmitoyl protein hydrolase/thioesterases is an enzyme (EC 3.1.2.22) that removes thioester-linked fatty acyl groups such as palmitate from modified cysteine residues in proteins or peptides during lysosomal degradation. It catalyzes the reaction

<span class="mw-page-title-main">ACOT8</span> Protein-coding gene in the species Homo sapiens

Acyl-coenzyme A thioesterase 8 is an enzyme that in humans is encoded by the ACOT8 gene.

<span class="mw-page-title-main">ACOT2</span> Protein-coding gene in the species Homo sapiens

Acyl-CoA thioesterase 2, also known as ACOT2, is an enzyme which in humans is encoded by the ACOT2 gene.

<span class="mw-page-title-main">ACOT7</span> Protein-coding gene in the species Homo sapiens

Cytosolic acyl coenzyme A thioester hydrolase is an enzyme that in humans is encoded by the ACOT7 gene.

<span class="mw-page-title-main">ACOT4</span> Protein-coding gene in the species Homo sapiens

Acyl-coenzyme A thioesterase 4 is an enzyme that in humans is encoded by the ACOT4 gene.

<span class="mw-page-title-main">ACOT11</span> Protein-coding gene in the species Homo sapiens

Acyl-coenzyme A thioesterase 11 also known as StAR-related lipid transfer protein 14 (STARD14) is an enzyme that in humans is encoded by the ACOT11 gene. This gene encodes a protein with acyl-CoA thioesterase activity towards medium (C12) and long-chain (C18) fatty acyl-CoA substrates which relies on its StAR-related lipid transfer domain. Expression of a similar murine protein in brown adipose tissue is induced by cold exposure and repressed by warmth. Expression of the mouse protein has been associated with obesity, with higher expression found in obesity-resistant mice compared with obesity-prone mice. Alternative splicing results in two transcript variants encoding different isoforms.

<span class="mw-page-title-main">ACOT12</span> Protein-coding gene in the species Homo sapiens

Acyl-coenzyme A thioesterase 12 or StAR-related lipid transfer protein 15 (STARD15) is an enzyme that in humans is encoded by the ACOT12 gene. The protein contains a StAR-related lipid transfer domain.

<span class="mw-page-title-main">ACOT6</span> Protein-coding gene in the species Homo sapiens

Acyl-CoA thioesterase 6 is a protein that in humans is encoded by the ACOT6 gene. The protein, also known as C14orf42, is an enzyme with thioesterase activity.

<span class="mw-page-title-main">Acyl-CoA thioesterase 9</span> Protein-coding gene in humans

Acyl-CoA thioesterase 9 is a protein that is encoded by the human ACOT9 gene. It is a member of the acyl-CoA thioesterase superfamily, which is a group of enzymes that hydrolyze Coenzyme A esters. There is no known function, however it has been shown to act as a long-chain thioesterase at low concentrations, and a short-chain thioesterase at high concentrations.

<span class="mw-page-title-main">ACOT13</span> Protein-coding gene in the species Homo sapiens

Acyl-CoA thioesterase 13 is a protein that in humans is encoded by the ACOT13 gene. This gene encodes a member of the thioesterase superfamily. In humans, the protein co-localizes with microtubules and is essential for sustained cell proliferation.

<span class="mw-page-title-main">ACOT1</span> Protein-coding gene in the species Homo sapiens

Acyl-CoA thioesterase 1 is a protein that in humans is encoded by the ACOT1 gene.

<i>beta</i>-Hydroxy <i>beta</i>-methylbutyryl-CoA Chemical compound

β-Hydroxy β-methylbutyryl-coenzyme A (HMB-CoA), also known as 3-hydroxyisovaleryl-CoA, is a metabolite of L-leucine that is produced in the human body. Its immediate precursors are β-hydroxy β-methylbutyric acid (HMB) and β-methylcrotonoyl-CoA (MC-CoA). It can be metabolized into HMB, MC-CoA, and HMG-CoA in humans.

References