Clinical data | |
---|---|
Other names | Amphenone; 3,3-bis(p-Aminophenyl)butan-2-one |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
CompTox Dashboard (EPA) | |
Chemical and physical data | |
Formula | C16H18N2O |
Molar mass | 254.333 g·mol−1 |
3D model (JSmol) | |
| |
|
Amphenone B, or simply amphenone, also known as 3,3-bis(p-aminophenyl)butan-2-one, is an inhibitor of steroid hormone and thyroid hormone biosynthesis which was never marketed but has been used as a tool in scientific research to study corticosteroids and the adrenal glands. [1] [2] It acts as competitive inhibitor of 11β-hydroxylase, 17α-hydroxylase, 17,20-lyase, 21-hydroxylase, and 3β-hydroxysteroid dehydrogenase, [1] [2] [3] as well as of cholesterol side-chain cleavage enzyme, [4] [5] thereby inhibiting the production of steroid hormones including glucocorticoids, mineralocorticoids, androgens, and estrogens. [4] [6] In addition, amphenone B inhibits the production of thyroxine by a thiouracil-like mechanism, specifically via inhibition of organic binding of iodine and uptake of iodide by the thyroid gland. [7] [5] [8] [9]
Amphenone B was first synthesized in 1950 and is a diphenylmethane derivative that was derived from the insecticide 2,2-di(p-chlorophenyl)-1,1-dichloroethane (p,p'-DDD), [4] [10] which in 1949 had been found to selectively induce adrenal atrophy. [1] [11] [12] In contrast to p,p'-DDD, which has direct cytotoxic effects on the adrenal glands via an unknown mechanism, [1] amphenone B does not have cytotoxic effects, and instead causes adrenal and thyroid gland hypertrophy due to respective inhibition of corticosteroid and thyroxine biosynthesis, subsequent loss of negative feedback on the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, and consequent hypersecretion of adrenocorticotropic hormone (ACTH) and thyroid-stimulating hormone (TSH) from the pituitary gland. [1] [2] [4]
Amphenone B has also been found to produce progesterone-like progestogenic effects, including uterine hypertrophy and mammary lobuloalveolar development. [1] [5] [13] [14] These effects occurred even in animals that had been ovariectomized and hypophysectomized, suggesting that amphenone B might be acting directly on the target organs. [1] [5] However, it was found that adrenalectomy abolished the progesterone-like effects of amphenone B on the uterus, whereas those of progesterone were retained in the same experimental conditions, supporting the notion that amphenone B was not actually acting directly on the uterus. [1] Conversely, the progesterone-like effects of amphenone B on the mammary glands were found to persist even in adrenalectomized and ovariectomized animals. [5]
Amphenone B was tested in humans in the mid-1950s as a potential treatment for cortisol-dependent conditions such as Cushing's syndrome and adrenocortical carcinoma. [1] [15] In healthy subjects and patients with adrenocortical carcinoma, the drug was found to be effective in decreasing circulating levels of corticosteroids including cortisol, corticosterone, and aldosterone, [15] as well as in decreasing circulating levels of androgens and estrogens. [1] [6] Moreover, due to reduced aldosterone secretion, it caused marked diuresis and increased urinary sodium excretion. [2] [13] Unfortunately, amphenone B also caused many side effects, some severe, including drowsiness, gastrointestinal disturbances such as heartburn, nausea, and vomiting, morbilliform and pruritic rashes, methemoglobinemia, and hepatotoxicity including impaired liver function and hepatomegaly, [7] and these toxicities, as well as the diversity of its effects on various organs (e.g., also possessing antithyroid and even anesthetic activity), precluded its therapeutic use. [2] [4] [11] [15] [13]
Subsequently, analogues of amphenone B with reduced toxicity and improved specificity were developed. [2] [4] [11] One of the most potent of these was metyrapone (2-methyl-1,2-di(pyridin-3-yl)propan-1-one), [11] a selective inhibitor of 11β-hydroxylase, [2] [6] which was selected for clinical development and was eventually approved and marketed in 1958 as a diagnostic agent for Cushing's syndrome. [1] [4] [16] Another was mitotane (o,p'-DDD, or 1,1-(dichlorodiphenyl)-2,2-dichloroethane), an inhibitor of cholesterol side-chain cleavage enzyme and to a lesser extent of other steroidogenic enzymes, [17] [18] which additionally has selective and direct cytotoxic effects on the adrenal glands similarly to p,p'-DDD, and was introduced in 1960 for the treatment of adrenocortical carcinoma. [4] Aminoglutethimide (3-(4-aminophenyl)-3-ethylpiperidine-2,6-dione), which was originally introduced as an anticonvulsant in 1960, is closely related structurally to amphenone B, [4] [19] and following its introduction, was found to cause adrenal insufficiency in patients due to inhibition of cholesterol side-chain cleavage enzyme and suppression of corticosteroid production. [20] [21] [22] The drug was subsequently repurposed for use in the treatment of metastatic breast cancer and Cushing's syndrome. [20] [22]
Amphenone B was originally thought to be 1,2-bis(p-aminophenyl)-2-methylpropan-1-one, but it was discovered in 1957 that the synthesis of amphenone B was accompanied by an unexpected molecular rearrangement and that the drug was actually 3,3-bis-(p-aminophenyl)butan-2-one. [2] [13] As such, early publications of amphenone B, and some subsequent publications, [5] refer to the drug by the incorrect structure. [2]
The adrenal glands are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex which produces steroid hormones and an inner medulla. The adrenal cortex itself is divided into three main zones: the zona glomerulosa, the zona fasciculata and the zona reticularis.
Dehydroepiandrosterone (DHEA), also known as androstenolone, is an endogenous steroid hormone precursor. It is one of the most abundant circulating steroids in humans. DHEA is produced in the adrenal glands, the gonads, and the brain. It functions as a metabolic intermediate in the biosynthesis of the androgen and estrogen sex steroids both in the gonads and in various other tissues. However, DHEA also has a variety of potential biological effects in its own right, binding to an array of nuclear and cell surface receptors, and acting as a neurosteroid and modulator of neurotrophic factor receptors.
Adrenocorticotropic hormone is a polypeptide tropic hormone produced by and secreted by the anterior pituitary gland. It is also used as a medication and diagnostic agent. ACTH is an important component of the hypothalamic-pituitary-adrenal axis and is often produced in response to biological stress. Its principal effects are increased production and release of cortisol and androgens by the zona fasiculata and zona reticularis, respectively. ACTH is also related to the circadian rhythm in many organisms.
Progestogens, also sometimes written progestins, progestagens or gestagens, are a class of natural or synthetic steroid hormones that bind to and activate the progesterone receptors (PR). Progesterone is the major and most important progestogen in the body. The progestogens are named for their function in maintaining pregnancy, although they are also present at other phases of the estrous and menstrual cycles.
The adrenal cortex is the outer region and also the largest part of the adrenal gland. It is divided into three separate zones: zona glomerulosa, zona fasciculata and zona reticularis. Each zone is responsible for producing specific hormones. It is also a secondary site of androgen synthesis.
Ketoconazole, sold under the brand name Nizoral among others, is an antiandrogen, antifungal, and antiglucocorticoid medication used to treat a number of fungal infections. Applied to the skin it is used for fungal skin infections such as tinea, cutaneous candidiasis, pityriasis versicolor, dandruff, and seborrheic dermatitis. Taken by mouth it is a less preferred option and only recommended for severe infections when other agents cannot be used. Other uses include treatment of excessive male-patterned hair growth in women and Cushing's syndrome.
The endocrine system is a network of glands and organs located throughout the body. It is similar to the nervous system in that it plays a vital role in controlling and regulating many of the body's functions. Endocrine glands are ductless glands of the endocrine system that secrete their products, hormones, directly into the blood. The major glands of the endocrine system include the pineal gland, pituitary gland, pancreas, ovaries, testicles, thyroid gland, parathyroid gland, hypothalamus and adrenal glands. The hypothalamus and pituitary glands are neuroendocrine organs.
Pregnenolone (P5), or pregn-5-en-3β-ol-20-one, is an endogenous steroid and precursor/metabolic intermediate in the biosynthesis of most of the steroid hormones, including the progestogens, androgens, estrogens, glucocorticoids, and mineralocorticoids. In addition, pregnenolone is biologically active in its own right, acting as a neurosteroid.
17α-Hydroxyprogesterone (17α-OHP), also known as 17-OH progesterone (17-OHP), or hydroxyprogesterone (OHP), is an endogenous progestogen steroid hormone related to progesterone. It is also a chemical intermediate in the biosynthesis of many other endogenous steroids, including androgens, estrogens, glucocorticoids, and mineralocorticoids, as well as neurosteroids.
Aminoglutethimide (AG), sold under the brand names Elipten, Cytadren, and Orimeten among others, is a medication which has been used in the treatment of seizures, Cushing's syndrome, breast cancer, and prostate cancer, among other indications. It has also been used by bodybuilders, athletes, and other men for muscle-building and performance- and physique-enhancing purposes. AG is taken by mouth three or four times per day.
Mitotane, sold under the brand name Lysodren, is a steroidogenesis inhibitor and cytostatic antineoplastic medication which is used in the treatment of adrenocortical carcinoma and Cushing's syndrome. It is a derivative of the early insecticide DDT and an isomer of p,p'-DDDTooltip dichlorodiphenyldichloroethane (4,4'-dichlorodiphenyldichloroethane) and is also known as 2,4'-(dichlorodiphenyl)-2,2-dichloroethane (o,p'-DDD).
In humans and other animals, the adrenocortical hormones are hormones produced by the adrenal cortex, the outer region of the adrenal gland. These polycyclic steroid hormones have a variety of roles that are crucial for the body's response to stress, and they also regulate other functions in the body. Threats to homeostasis, such as injury, chemical imbalances, infection, or psychological stress, can initiate a stress response. Examples of adrenocortical hormones that are involved in the stress response are aldosterone and cortisol. These hormones also function in regulating the conservation of water by the kidneys and glucose metabolism, respectively.
Trilostane, sold under the brand name Vetoryl among others, is a medication which has been used in the treatment of Cushing's syndrome, Conn's syndrome, and postmenopausal breast cancer in humans. It was withdrawn for use in humans in the United States in the 1990s but was subsequently approved for use in veterinary medicine in the 2000s to treat Cushing's syndrome in dogs. It is taken by mouth.
Steroid 21-hydroxylase is a protein that in humans is encoded by the CYP21A2 gene. The protein is an enzyme that hydroxylates steroids at the C21 position on the molecule. Naming conventions for enzymes are based on the substrate acted upon and the chemical process performed. Biochemically, this enzyme is involved in the biosynthesis of the adrenal gland hormones aldosterone and cortisol, which are important in blood pressure regulation, sodium homeostasis and blood sugar control. The enzyme converts progesterone and 17α-hydroxyprogesterone into 11-deoxycorticosterone and 11-deoxycortisol, respectively, within metabolic pathways which in humans ultimately lead to aldosterone and cortisol creation—deficiency in the enzyme may cause congenital adrenal hyperplasia.
Steroid 11β-hydroxylase, also known as steroid 11β-monooxygenase, is a steroid hydroxylase found in the zona glomerulosa and zona fasciculata of the adrenal cortex. Named officially the cytochrome P450 11B1, mitochondrial, it is a protein that in humans is encoded by the CYP11B1 gene. The enzyme is involved in the biosynthesis of adrenal corticosteroids by catalyzing the addition of hydroxyl groups during oxidation reactions.
Hormonal therapy in oncology is hormone therapy for cancer and is one of the major modalities of medical oncology, others being cytotoxic chemotherapy and targeted therapy (biotherapeutics). It involves the manipulation of the endocrine system through exogenous or external administration of specific hormones, particularly steroid hormones, or drugs which inhibit the production or activity of such hormones. Because steroid hormones are powerful drivers of gene expression in certain cancer cells, changing the levels or activity of certain hormones can cause certain cancers to cease growing, or even undergo cell death. Surgical removal of endocrine organs, such as orchiectomy and oophorectomy can also be employed as a form of hormonal therapy.
Cyanoketone, also known as 2α-cyano-4,4',17α-trimethylandrost-5-en-17β-ol-3-one (CTM), is a synthetic androstane steroid and a steroidogenesis inhibitor which is used in scientific research. On account of its structural similarity to pregnenolone, cyanoketone binds to and acts as a potent, selective, and irreversible inhibitor of 3β-hydroxysteroid dehydrogenase (3β-HSD), an enzyme that is responsible for the conversion of pregnenolone into progesterone, 17α-hydroxypregnenolone into 17α-hydroxyprogesterone, DHEATooltip dehydroepiandrosterone into androstenedione, and androstenediol into testosterone. As such, cyanoketone inhibits the production of both gonadal and adrenal steroids, including progesterone, androgens, estrogens, and corticosteroids. The drug is too toxic for therapeutic use in humans, and so has been used instead exclusively as a research tool.
An inborn error of steroid metabolism is an inborn error of metabolism due to defects in steroid metabolism.
A steroidogenesis inhibitor, also known as a steroid biosynthesis inhibitor, is a type of drug which inhibits one or more of the enzymes that are involved in the process of steroidogenesis, the biosynthesis of endogenous steroids and steroid hormones. They may inhibit the production of cholesterol and other sterols, sex steroids such as androgens, estrogens, and progestogens, corticosteroids such as glucocorticoids and mineralocorticoids, and neurosteroids. They are used in the treatment of a variety of medical conditions that depend on endogenous steroids.
Steroidogenic enzymes are enzymes that are involved in steroidogenesis and steroid biosynthesis. They are responsible for the biosynthesis of the steroid hormones, including sex steroids and corticosteroids, as well as neurosteroids, from cholesterol. Steroidogenic enzymes are most highly expressed in classical steroidogenic tissues, such as the testis, ovary, and adrenal cortex, but are also present in other tissues in the body.
[...] concentration in the gland was observed after administration of amphenone "B." Radioiodine concentrations were found to be approximately 10 per cent of the control values. Further in viva and in vitro experiments have shown that this is most probably due to a thiouracil-type of [...]