Anaipadi Formation

Last updated
Anaipadi formation
Stratigraphic range: Coniacian
~88–86  Ma
O
S
D
C
P
T
J
K
Pg
N
Type Geological formation
Underlies Ariyalur Group
Location
CountryFlag of India.svg  India

The Anapadi Formation is a gelogical formation dating back to the Late Cretaceous Period ( Coniacian ) of India. [1]

Contents

Description

The Anaipadi Formation preserves fossils from a neritic environment (the relatively shallow part of the ocean above the drop-off of the continental shelf). [1] The upper portion of the unit, which is marked by the presence of the ammonite Kossmaticeras theobaldianum. [2] The Anaipadi Formation preserves a rich mollusc fauna. [1] including common fossils of ammonites and inoceramids, as well as brachiopods. [3] Fossils of marine reptiles have also been found, although they are rare. [1] It has been suggested that the abundant brachiopods and inoceramids in the upper Anaipadi Formation indicates a transgressive environment. [3]

In addition to the marine life found in the upper Anaipadi Formation, terrestrial matter was in the area evidently prone to being carried out to sea. Among other finds recovered in the unit are for instance a large amount of petrified wood. [3] The presence of large quantities of wood indicates that land with dense vegetation was located relatively close a marine environment [2]

Fossil Content

Rare fossils of Marine Reptiles are found in the Anaipadi formation as well. [1]

Dinosaurs of the Anaipadi formation
GenusSpeciesLocationMaterialNotesImages
Dravidosaurus D. blanfordiWest of the village of Siranattam GSI SR Pal 1, a partial skull, as well as fossils identified as an isolated tooth, a sacrum, an ilium, an ischium, ten armor plates, and a tail spike, designated (in order) as GSI SR Pal 2–7.[7] Yadigiri and Ayyasami identified several of the skull bones in GSI SR Pal 1, of which the most well-preserved were the parietals, frontals, supraorbitals, squamosal, and quadrate.In addition to the armor plate GSI SR Pal 6, nine other fossils identified as armor plates were found associated with the referred specimens.A possible late surviving Stegosaur
Skull diagram of Dravidosaurus Dravidosaurus skull.png
Skull diagram of Dravidosaurus
Sharks of the Anaipadi formation
GenusSpeciesLocationNotesMaterialImages
Squalicorax S.sp.A lamniform shark
Squalicorax falcatus Squalicorax falcatus.jpg
Squalicorax falcatus
Dwardius D. sp.A cardabiodontid lamniform shark
NHMUK PV OR 39053.png
Cretalamna ?C.? sp.An Otodontid lamniform shark
Cretalamna Cretalamna reconstruction.png
Cretalamna
Eostritolamia E. sp.An Odontaspitid lamniform shark
Protosqualus P. sp.A dogfish
Protosqualus argentinensis tooth (Simple).svg
Gladioserratus ?G.? spA cow shark
Molluscs of the Anaipadi formation
GenusSpeciesLocationMaterialNotesImages
Kossmaticeras K. theobaldianumA Kosmaticeratid ammonite

The formation also contains fossils of other ammonites, inoceramids and brachiopods. [3]

Related Research Articles

<span class="mw-page-title-main">Biostratigraphy</span> Stratigraphy which assigns ages of rock strata by using fossils

Biostratigraphy is the branch of stratigraphy which focuses on correlating and assigning relative ages of rock strata by using the fossil assemblages contained within them. The primary objective of biostratigraphy is correlation, demonstrating that a particular horizon in one geological section represents the same period of time as another horizon at a different section. Fossils within these strata are useful because sediments of the same age can look completely different, due to local variations in the sedimentary environment. For example, one section might have been made up of clays and marls, while another has more chalky limestones. However, if the fossil species recorded are similar, the two sediments are likely to have been laid down around the same time. Ideally these fossils are used to help identify biozones, as they make up the basic biostratigraphy units, and define geological time periods based upon the fossil species found within each section.

The Yixian Formation is a geological formation in Jinzhou, Liaoning, People's Republic of China, that spans the Barremian stage of the Early Cretaceous. It is known for its exquisitely preserved fossils, and is mainly composed of basalts interspersed with siliciclastic sediments.

<i>Dravidosaurus</i> Extinct species of reptile

Dravidosaurus is a controversial taxon of Late Cretaceous reptiles, variously interpreted as either a ornithischian dinosaur or a plesiosaur. The genus contains a single species, D. blanfordi, known from mostly poorly preserved fossils from the Coniacian of southern India.

<i>Inoceramus</i> Extinct genus of bivalves

Inoceramus is an extinct genus of fossil marine pteriomorphian bivalves that superficially resembled the related winged pearly oysters of the extant genus Pteria. They lived from the Early Jurassic to latest Cretaceous.

<i>Nannopterygius</i> Extinct genus of reptiles

Nannopterygius is an extinct genus of ophthalmosaurid ichthyosaur that lived during the Middle Jurassic to the Early Cretaceous. Fossils are known from England, Kazakhstan, Russia, and Norway and six species are currently assigned to the genus.

<span class="mw-page-title-main">Straight Cliffs Formation</span> Geologic formation in south central Utah, USA

The Straight Cliffs Formation is a stratigraphic unit in the Kaiparowits Plateau of south central Utah. It is Late Cretaceous in age and contains fluvial, paralic, and marginal marine (shoreline) siliciclastic strata. It is well exposed around the margin of the Kaiparowits Plateau in the Grand Staircase – Escalante National Monument in south central Utah. The formation is named after the Straight Cliffs, a long band of cliffs creating the topographic feature Fiftymile Mountain.

<i>Arthropterygius</i> Extinct genus of reptiles

Arthropterygius is a widespread genus of ophthalmosaurid ichthyosaur which existed in Canada, Norway, Russia, and Argentina from the late Jurassic period and possibly to the earliest Cretaceous.

<span class="mw-page-title-main">Paleontology in North Carolina</span> Paleontological research in the U.S. state of North Carolina

Paleontology in North Carolina refers to paleontological research occurring within or conducted by people from the U.S. state of North Carolina. Fossils are common in North Carolina. According to author Rufus Johnson, "almost every major river and creek east of Interstate 95 has exposures where fossils can be found". The fossil record of North Carolina spans from Eocambrian remains that are 600 million years old, to the Pleistocene 10,000 years ago.

<span class="mw-page-title-main">Paleontology in Minnesota</span> Paleontological research in the U.S. state of Minnesota

Paleontology in Minnesota refers to paleontological research occurring within or conducted by people from the U.S. state of Minnesota. The geologic record of Minnesota spans from Precambrian to recent with the exceptions of major gaps including the Silurian period, the interval from the Middle to Upper Devonian to the Cretaceous, and the Cenozoic. During the Precambrian, Minnesota was covered by an ocean where local bacteria ended up forming banded iron formations and stromatolites. During the early part of the Paleozoic era southern Minnesota was covered by a shallow tropical sea that would come to be home to creatures like brachiopods, bryozoans, massive cephalopods, corals, crinoids, graptolites, and trilobites. The sea withdrew from the state during the Silurian, but returned during the Devonian. However, the rest of the Paleozoic is missing from the local rock record. The Triassic is also missing from the local rock record and Jurassic deposits, while present, lack fossils. Another sea entered the state during the Cretaceous period, this one inhabited by creatures like ammonites and sawfish. Duckbilled dinosaurs roamed the land. The Paleogene and Neogene periods of the ensuing Cenozoic era are also missing from the local rock record, but during the Ice Age evidence points to glacial activity in the state. Woolly mammoths, mastodons, and musk oxen inhabited Minnesota at the time. Local Native Americans interpreted such remains as the bones of the water monster Unktehi. They also told myths about thunder birds that may have been based on Ice Age bird fossils. By the early 19th century, the state's fossil had already attracted the attention of formally trained scientists. Early research included the Cretaceous plant discoveries made by Leo Lesquereux.

<span class="mw-page-title-main">Paleontology in South Dakota</span> Paleontological research in the U.S. state of South Dakota

Paleontology in South Dakota refers to paleontological research occurring within or conducted by people from the U.S. state of South Dakota. South Dakota is an excellent source of fossils as finds have been widespread throughout the state. During the early Paleozoic era South Dakota was submerged by a shallow sea that would come to be home to creatures like brachiopods, cephalopods, corals, and ostracoderms. Local sea levels rose and fall during the Carboniferous and the sea left completely during the Permian. During the Triassic, the state became a coastal plain, but by the Jurassic it was under a sea where ammonites lived. Cretaceous South Dakota was also covered by a sea that was home to mosasaurs. The sea remained in place after the start of the Cenozoic before giving way to a terrestrial mammal fauna including the camel Poebrotherium, three-toed horses, rhinoceroses, saber-toothed cat, and titanotheres. During the Ice Age glaciers entered the state, which was home to mammoths and mastodons. Local Native Americans interpreted fossils as the remains of the water monster Unktehi and used bits of Baculites shells in magic rituals to summon buffalo herds. Local fossils came to the attention of formally trained scientists with the Lewis and Clark Expedition. The Cretaceous horned dinosaur Triceratops horridus is the South Dakota state fossil.

<span class="mw-page-title-main">Paleontology in Oklahoma</span> Paleontological research in the U.S. state of Oklahoma

Paleontology in Oklahoma refers to paleontological research occurring within or conducted by people from the U.S. state of Oklahoma. Oklahoma has a rich fossil record spanning all three eras of the Phanerozoic Eon. Oklahoma is the best source of Pennsylvanian fossils in the United States due to having an exceptionally complete geologic record of the epoch. From the Cambrian to the Devonian, all of Oklahoma was covered by a sea that would come to be home to creatures like brachiopods, bryozoans, graptolites and trilobites. During the Carboniferous, an expanse of coastal deltaic swamps formed in areas of the state where early tetrapods would leave behind footprints that would later fossilize. The sea withdrew altogether during the Permian period. Oklahoma was home a variety of insects as well as early amphibians and reptiles. Oklahoma stayed dry for most of the Mesozoic. During the Late Triassic, carnivorous dinosaurs left behind footprints that would later fossilize. During the Cretaceous, however, the state was mostly covered by the Western Interior Seaway, which was home to huge ammonites and other marine invertebrates. During the Cenozoic, Oklahoma became home to creatures like bison, camels, creodonts, and horses. During the Ice Age, the state was home to mammoths and mastodons. Local Native Americans are known to have used fossils for medicinal purposes. The Jurassic dinosaur Saurophaganax maximus is the Oklahoma state fossil.

<span class="mw-page-title-main">Paleontology in Texas</span> Paleontological research in U.S

Paleontology in Texas refers to paleontological research occurring within or conducted by people from the U.S. state of Texas. Author Marian Murray has said that "Texas is as big for fossils as it is for everything else." Some of the most important fossil finds in United States history have come from Texas. Fossils can be found throughout most of the state. The fossil record of Texas spans almost the entire geologic column from Precambrian to Pleistocene. Shark teeth are probably the state's most common fossil. During the early Paleozoic era Texas was covered by a sea that would later be home to creatures like brachiopods, cephalopods, graptolites, and trilobites. Little is known about the state's Devonian and early Carboniferous life. Evidence indicates that during the late Carboniferous the state was home to marine life, land plants and early reptiles. During the Permian, the seas largely shrank away, but nevertheless coral reefs formed in the state. The rest of Texas was a coastal plain inhabited by early relatives of mammals like Dimetrodon and Edaphosaurus. During the Triassic, a great river system formed in the state that was inhabited by crocodile-like phytosaurs. Little is known about Jurassic Texas, but there are fossil aquatic invertebrates of this age like ammonites in the state. During the Early Cretaceous local large sauropods and theropods left a great abundance of footprints. Later in the Cretaceous, the state was covered by the Western Interior Seaway and home to creatures like mosasaurs, plesiosaurs, and few icthyosaurs. Early Cenozoic Texas still contained areas covered in seawater where invertebrates and sharks lived. On land the state would come to be home to creatures like glyptodonts, mammoths, mastodons, saber-toothed cats, giant ground sloths, titanotheres, uintatheres, and dire wolves. Archaeological evidence suggests that local Native Americans knew about local fossils. Formally trained scientists were already investigating the state's fossils by the late 1800s. In 1938, a major dinosaur footprint find occurred near Glen Rose. Pleurocoelus was the Texas state dinosaur from 1997 to 2009, when it was replaced by Paluxysaurus jonesi after the Texan fossils once referred to the former species were reclassified to a new genus.

<span class="mw-page-title-main">Paleontology in New Mexico</span> Paleontological research in the U.S. state of New Mexico

Paleontology in New Mexico refers to paleontological research occurring within or conducted by people from the U.S. state of New Mexico. The fossil record of New Mexico is exceptionally complete and spans almost the entire stratigraphic column. More than 3,300 different kinds of fossil organisms have been found in the state. More than 700 of these were new to science and more than 100 of those were type species for new genera. During the early Paleozoic, southern and western New Mexico were submerged by a warm shallow sea that would come to be home to creatures including brachiopods, bryozoans, cartilaginous fishes, corals, graptolites, nautiloids, placoderms, and trilobites. During the Ordovician the state was home to algal reefs up to 300 feet high. During the Carboniferous, a richly vegetated island chain emerged from the local sea. Coral reefs formed in the state's seas while terrestrial regions of the state dried and were home to sand dunes. Local wildlife included Edaphosaurus, Ophiacodon, and Sphenacodon.

<span class="mw-page-title-main">Paleontology in California</span> Paleontological research occurring within or conducted by California

Paleontology in California refers to paleontologist research occurring within or conducted by people from the U.S. state of California. California contains rocks of almost every age from the Precambrian to the Recent.

<span class="mw-page-title-main">Agardhfjellet Formation</span> Geological formation in Svalbard, Norway

The Agardhfjellet Formation is a geologic formation in Svalbard, Norway. It preserves fossils dating back to the Oxfordian to Berriasian stages, spanning the Late Jurassic-Early Cretaceous boundary. The formation contains the Slottsmøya Member, a highly fossiliferous unit (Lagerstätte) where many ichthyosaur and plesiosaur fossils have been found, as well as abundant and well preserved fossils of invertebrates.

One of the major depositional strata in the Himalaya is the Lesser Himalayan Strata from the Paleozoic to Mesozoic eras. It had a quite different marine succession during the Paleozoic, as most parts of it are sparsely fossiliferous or even devoid of any well-defined fossils. Moreover, it consists of many varied lithofacies, making correlation work more difficult. This article describes the major formations of the Paleozoic – Mesozoic Lesser Himalayan Strata, including the Tal Formation, Gondwana Strata, Singtali Formation and Subathu Formation.

<i>Mauriciosaurus</i> Extinct genus of reptiles

Mauriciosaurus is a genus of polycotylid plesiosaur from the Late Cretaceous of Mexico. It contains a single species, M. fernandezi, described in 2017 by Eberhard Frey and colleagues from a single well-preserved juvenile specimen about 1.9 metres long. Morphologically, it is overall most similar to the polycotyline polycotylids Trinacromerum and Dolichorhynchops. However, several features separate Mauriciosaurus from all other polycotylids, warranting the naming of a new genus. These include the sophisticated pattern of ridges on the bottom of the parasphenoid bone on its palate; the narrow openings in the palate bordered by the pterygoid bones; the lack of perforations in the surface of the coracoid; and the highly unusual arrangement of gastralia, or belly ribs, which is only otherwise seen in the non-polycotylid Cryptoclidus.

<i>Leyvachelys</i> Extinct genus of turtles

Leyvachelys is an extinct genus of turtles in the family Sandownidae from the Early Cretaceous of the present-day Altiplano Cundiboyacense, Eastern Ranges, Colombian Andes. The genus is known only from its type species, Leyvachelys cipadi, described in 2015 by Colombian paleontologist Edwin Cadena. Fossils of Leyvachelys have been found in the fossiliferous Paja Formation, close to Villa de Leyva, Boyacá, after which the genus is named. The holotype specimen is the oldest and most complete sandownid turtle found to date.

<span class="mw-page-title-main">Kristianstad Basin</span> Cretaceous geological formation in Skåne, Sweden

The Kristianstad Basin is a Cretaceous-age structural basin and geological formation in northeastern Skåne, the southernmost province of Sweden. The basin extends from Hanöbukten, a bay in the Baltic Sea, in the east to the town of Hässleholm in the west and ends with the two horsts Linderödsåsen and Nävlingeåsen in the south. The basin's northern boundary is more diffuse and there are several outlying portions of Cretaceous-age sediments. During the Cretaceous, the region was a shallow subtropical to temperate inland sea and archipelago.

The Yangliujing Formation is a Middle Triassic geologic unit found in the Guizhou and Yunnan Provinces of southern China.

References

  1. 1 2 3 4 5 Verma, Omkar (2015). "Cretaceous vertebrate fauna of the Cauvery Basin, southern India: Palaeodiversity and palaeobiogeographic implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 431: 53–67. doi:10.1016/j.palaeo.2015.04.021.
  2. 1 2 Yadagiri, P.; Ayyasami, K. (1979-11-01). "A New Stegosaurian Dinosaur from Upper Cretaceous Sediments of South India". Journal Geological Society of India. 20 (11): 521–530. doi:10.17491/jgsi/1979/201101. ISSN   0974-6889.
  3. 1 2 3 4 Ayyasami, Krishnan (2006). "Role of oysters in biostratigraphy: A case study from the Cretaceous of the Ariyalur area, southern India". Geosciences Journal. 10 (3): 237–247. doi:10.1007/BF02910367. ISSN   1226-4806.