Anamniotes

Last updated

Anamniotes
Cut-throat-spawning-15271.jpg
Trout spawning showing typical anamniote external fertilization
TriturusVulgarisLarva.JPG
Anamniotes have a distinct larval stage, such as in the smooth newt.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Subphylum: Vertebrata
(unranked): Ichthyopsida
Huxley, 1863
Groups included
Cladistically included but traditionally excluded taxa
Amniotes

The anamniotes are an informal group of craniates comprising all fish and amphibians, which lay their eggs in aquatic environments. They are distinguished from the amniotes (reptiles, birds and mammals), which can reproduce on dry land either by laying shelled eggs or by carrying fertilized eggs within the female. Older sources, particularly before the 20th century, may refer to anamniotes as "lower vertebrates" and amniotes as "higher vertebrates", based on the antiquated idea of the evolutionary great chain of being.

Contents

The name "anamniote" is a back-formation word created by adding the prefix an- to the word amniote, which in turn refers to the amnion, an extraembryonic membrane present during the amniotes' embryonic development which serves as a biochemical barrier that shields the embryo from environmental fluctuations by regulating the oxygen, carbon dioxide and metabolic waste exchanges and secreting a cushioning fluid. As the name suggests, anamniote embryos lack an amnion during embryonic development, and therefore rely on the presence of external water to provide oxygen and help dilute and excrete waste products (particularly ammonia) via diffusion in order for the embryo to complete development without being intoxicated by their own metabolites. [1] This means anamniotes are almost always dependent on an aqueous (or at least very moist) environment for reproduction [2] and are thus restricted to spawning in or near water bodies. They are also highly sensitive to chemical and temperature variation in the surrounding water, and are also more vulnerable to egg predation and parasitism.

During their life cycle, all anamniote classes pass through a completely aquatic egg stage, as well as an aquatic larval stage during which all hatchlings are gill-dependent and morphologically resemble tiny finless fish (known as a fry or a tadpole for fish and amphibians, respectively), before metamorphosizing into juvenile and adult forms (which might be aquatic, semiaquatic or even terrestrial), thus indicating their physiological homology.

Anamniote traits

Anamniote eggs from a frog. Frogspawn closeup.jpg
Anamniote eggs from a frog.

The group is characterized by retaining the primitive vertebrate condition in several traits: [3] [4]

History of discovery

The features unifying the anamniotes was first noted by Thomas Henry Huxley in 1863, who coined the phrase Ichtioid or Ichthyopsida ("fish-face") for the group. [5] [ failed verification ] It is a taxonomic classification just below the level of Vertebrata, though Huxley presented the Ichthyopsida as an informal unit and never ventured to forward a Linnaean rank for the group. The term ichthyopsida means fish-face or fish-like as opposed to the Sauropsida or lizard-face animals (reptiles and birds) and the mammals. [6] The group representing an evolutionary grade rather than a clade, the term anamniote is now used as an informal way of denoting the physical property of the group, rather than as a systematic unit.

Related Research Articles

<span class="mw-page-title-main">Amphibian</span> Class of ectothermic tetrapods

Amphibians are ectothermic, anamniotic, four-limbed vertebrate animals that constitute the class Amphibia. In its broadest sense, it is a paraphyletic group encompassing all tetrapods excluding the amniotes. All extant (living) amphibians belong to the monophyletic subclass Lissamphibia, with three living orders: Anura, Urodela (salamanders), and Gymnophiona (caecilians). Evolved to be mostly semiaquatic, amphibians have adapted to inhabit a wide variety of habitats, with most species living in freshwater, wetland or terrestrial ecosystems. Their life cycle typically starts out as aquatic larvae with gills known as tadpoles, but some species have developed behavioural adaptations to bypass this.

<span class="mw-page-title-main">Gill</span> Respiratory organ used by aquatic organisms

A gill is a respiratory organ that many aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow respiration on land provided they are kept moist. The microscopic structure of a gill presents a large surface area to the external environment. Branchia is the zoologists' name for gills.

<span class="mw-page-title-main">Tetrapod</span> Superclass of the first four-limbed vertebrates and their descendants

A tetrapod is any four-limbed vertebrate animal of the superclass Tetrapoda. Tetrapods include all extant and extinct amphibians and amniotes, with the latter in turn evolving into two major clades, the sauropsids and synapsids. Some tetrapods, such as snakes, legless lizards, and caecilians, have evolved to become limbless via mutations of the Hox gene. Nevertheless, these limbless groups still qualify as tetrapods through their ancestry, and some retain a pair of vestigial spurs that are remnants of the hindlimbs.

The oviduct in vertebrates is the passageway from an ovary. In human females, this is more usually known as the fallopian tube. The eggs travel along the oviduct. These eggs will either be fertilized by spermatozoa to become a zygote, or will degenerate in the body. Normally, these are paired structures, but in birds and some cartilaginous fishes, one or the other side fails to develop, and only one functional oviduct can be found.

<span class="mw-page-title-main">Amnion</span> Innermost membranous sac that surrounds and protects a developing embryo

The amnion is a membrane that closely covers human and various other embryos when they first form. It fills with amniotic fluid, which causes the amnion to expand and become the amniotic sac that provides a protective environment for the developing embryo. The amnion, along with the chorion, the yolk sac and the allantois protect the embryo. In birds, reptiles and monotremes, the protective sac is enclosed in a shell. In marsupials and placental mammals, it is enclosed in a uterus.

<span class="mw-page-title-main">Amniote</span> Clade of tetrapods including reptiles, birds and mammals

Amniotes are tetrapod vertebrate animals belonging to the clade Amniota, a large group that comprises the vast majority of living terrestrial and semiaquatic vertebrates. Amniotes evolved from amphibious stem tetrapod ancestors during the Carboniferous period. Those of Amniota are defined as the smallest crown clade containing humans, the Greek tortoise, and the Nile crocodile.

<span class="mw-page-title-main">Viviparity</span> Development of the embryo inside the mother

In animals, viviparity is development of the embryo inside the body of the mother, with the maternal circulation providing for the metabolic needs of the embryo's development, until the mother gives birth to a fully or partially developed juvenile that is at least metabolically independent. This is opposed to oviparity, where the embryos develop independently outside the mother in eggs until they are developed enough to break out as hatchlings; and ovoviviparity, where the embryos are developed in eggs that remain carried inside the mother's body until the hatchlings emerge from the mother as juveniles, similar to a live birth.

<span class="mw-page-title-main">Sauropsida</span> Taxonomic clade

Sauropsida is a clade of amniotes, broadly equivalent to the class Reptilia, though typically used in a broader sense to also include extinct stem-group relatives of modern reptiles and birds. The most popular definition states that Sauropsida is the sibling taxon to Synapsida, the other clade of amniotes which includes mammals as its only modern representatives. Although early synapsids have historically been referred to as "mammal-like reptiles", all synapsids are more closely related to mammals than to any modern reptile. Sauropsids, on the other hand, include all amniotes more closely related to modern reptiles than to mammals. This includes Aves (birds), which are recognized as a subgroup of archosaurian reptiles despite originally being named as a separate class in Linnaean taxonomy.

<span class="mw-page-title-main">Aquatic respiration</span> Process whereby an aquatic animal obtains oxygen from water

Aquatic respiration is the process whereby an aquatic organism exchanges respiratory gases with water, obtaining oxygen from oxygen dissolved in water and excreting carbon dioxide and some other metabolic waste products into the water.

<span class="mw-page-title-main">Egg</span> Organic vessel in which an embryo first begins to develop

An egg is an organic vessel grown by an animal to carry a possibly fertilized egg cell and to incubate from it an embryo within the egg until the embryo has become an animal fetus that can survive on its own, at which point the animal hatches.

<span class="mw-page-title-main">Allantois</span> Embryonic structure

The allantois is a hollow sac-like structure filled with clear fluid that forms part of a developing amniote's conceptus. It helps the embryo exchange gases and handle liquid waste.

<span class="mw-page-title-main">Labyrinthodontia</span> Paraphyletic group of tetrapodomorphs

"Labyrinthodontia" is an informal grouping of extinct predatory amphibians which were major components of ecosystems in the late Paleozoic and early Mesozoic eras. Traditionally considered a subclass of the class Amphibia, modern classification systems recognize that labyrinthodonts are not a formal natural group (clade) exclusive of other tetrapods. Instead, they consistute an evolutionary grade, ancestral to living tetrapods such as lissamphibians and amniotes. "Labyrinthodont"-grade vertebrates evolved from lobe-finned fishes in the Devonian, though a formal boundary between fish and amphibian is difficult to define at this point in time.

<span class="mw-page-title-main">Batrachomorpha</span> Clade of amphibians

The Batrachomorpha are a clade containing extant and extinct amphibians that are more closely related to modern amphibians than they are to mammals and reptiles. According to many analyses they include the extinct Temnospondyli; some show that they include the Lepospondyli instead. The name traditionally indicated a more limited group.

<span class="mw-page-title-main">Reptiliomorpha</span> Clade of reptile-like animals

Reptiliomorpha is a clade containing the amniotes and those tetrapods that share a more recent common ancestor with amniotes than with living amphibians (lissamphibians). It was defined by Michel Laurin (2001) and Vallin and Laurin (2004) as the largest clade that includes Homo sapiens, but not Ascaphus truei. Laurin and Reisz (2020) defined Pan-Amniota as the largest total clade containing Homo sapiens, but not Pipa pipa, Caecilia tentaculata, and Siren lacertina.

<span class="mw-page-title-main">Diadectomorpha</span> Extinct clade of tetrapods

Diadectomorpha is a clade of large tetrapods that lived in Euramerica during the Carboniferous and Early Permian periods and in Asia during Late Permian (Wuchiapingian), They have typically been classified as advanced reptiliomorphs positioned close to, but outside of the clade Amniota, though some recent research has recovered them as the sister group to the traditional Synapsida within Amniota, based on inner ear anatomy and cladistic analyses. They include both large carnivorous and even larger herbivorous forms, some semi-aquatic and others fully terrestrial. The diadectomorphs seem to have originated during late Mississippian times, although they only became common after the Carboniferous rainforest collapse and flourished during the Late Pennsylvanian and Early Permian periods.

<span class="mw-page-title-main">Evolutionary grade</span> Non-monophyletic grouping of organisms united by morphological or physiological characteristics

A grade is a taxon united by a level of morphological or physiological complexity. The term was coined by British biologist Julian Huxley, to contrast with clade, a strictly phylogenetic unit.

<span class="mw-page-title-main">Marine vertebrate</span> Marine animals with a vertebrate column

Marine vertebrates are vertebrates that live in marine environments, which include saltwater fish and marine tetrapods. As a subphylum of chordates, all vertebrates have evolved a vertebral column (backbone) based around the embryonic notochord, forming the core structural support of an internal skeleton, and also serves to enclose and protect the spinal cord.

<span class="mw-page-title-main">Opisthonephros</span>

The opisthonephros is the functional adult kidney in lampreys (cyclostomes), most fishes, and amphibians. It is formed from the extended mesonephros along with tubules from the posterior nephric ridge. The functional embryonic kidney in anamniotes is the pronephros.

The extraembryonic membranes are four membranes which assist in the development of an animal's embryo. Such membranes occur in a range of animals from humans to insects. They originate from the zygote, but are not considered part of the embryo. They typically perform roles in nutrition, gas exchange and waste removal.

The kidneys are a pair of organs of the excretory system in vertebrates, which maintain the balance of water and electrolytes in the body (osmoregulation), filter the blood, remove metabolic waste products, and, in many vertebrates, also produce hormones and maintain blood pressure. In healthy vertebrates, the kidneys maintain homeostasis of extracellular fluid in the body. When the blood is being filtered, the kidneys form urine, which consists of water and excess or unnecessary substances, the urine is then excreted from the body through other organs, which in vertebrates, depending on the species, may include the ureter, urinary bladder, cloaca, and urethra.

References

  1. Carroll, R. L. (1991). "The origin of reptiles". In Schultze, H.-P.; Trueb, L. (eds.). Origins of the higher groups of tetrapods — controversy and consensus. Ithaca: Cornell University Press. pp. 331–353. ISBN   978-0-8014-2497-7.
  2. Colbert, E. H.; Morales, M. (2001). Colbert's Evolution of the Vertebrates: A History of the Backboned Animals Through Time (4th ed.). New York: John Wiley & Sons. ISBN   978-0-471-38461-8.
  3. Romer, A. S.; Parsons, T. S. (1985) [1977]. The Vertebrate Body (6th ed.). Philadelphia: Saunders. ISBN   978-0-03-058443-5.
  4. Nicholson, H.A. (1880): Manual of Zoology, Blackwood And Sons. Original text
  5. Huxley, T.H. (1876): Lectures on Evolution. New York Tribune. Extra. no 36. In Collected Essays IV: pp 46–138 original text w/ figures
  6. Encyclopædia Britannica, 9th ed. (1878). original text