Antarcticeras Temporal range: | |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Mollusca |
Class: | Cephalopoda |
Order: | incertae sedis |
Genus: | Antarcticeras Doguzhaeva, Bengtson, Reguero and Mörs, 2017 |
Species: | A. nordenskjoeldi |
Binomial name | |
Antarcticeras nordenskjoeldi Doguzhaeva, Bengtson, Reguero and Mörs, 2017 | |
Antarcticeras is an extinct genus of enigmatic cephalopod from the Eocene of Antarctica. It contains a single species, A.nordenskjoeldi. It is either considered the last of the "orthocone"-type cephalopods, the only member of its subclass Paracoleoidea & a descendant of the orthoceratids, and a remarkable example of convergent evolution with coleoid cephalopods, or an oegospid squid and a transitional form in the development of the modern squid gladius, of which it is the only preserved example. [1] [2]
It is named after Swedish geologist and Antarctic explorer Otto Nordenskjöld. [1]
Antarcticeras is represented by two fossil shell fragments from the Early Eocene La Meseta Formation from Seymour Island, Antarctica. These are straight shells that closely resemble those of the orthocones, although they are thought to have been internal akin to those of certain coleoids such as the cuttlebone of cuttlefish and the "rams horn" shell of spirulids. The shells are weakly mineralized with the presence of soft tissues and were likely only preserved due to a unique depositional environment. Sympatric cephalopod taxa include the coiled nautiloid Euciphoceras . [1]
Antarcticeras was described in 2017 by Doguzhaeva et al., who recovered it as the only member of a ghost lineage of cephalopods that had diverged from all others during the Paleozoic. Its coleoid-esque internal shell was recovered as an instance of convergent evolution with coleoids. The coleoids are thought to have originated within the Bactritida during the Late Paleozoic and share similar anatomical features with one another, but Antarcticeras was found to differ from both groups, with its siphuncle placement more closely resembling that of the Actinocerida and especially the Orthocerida, which were recovered as its potential ancestors. For this reason, it was classified within the new subclass Paracoleoidea, order Antarcticerida, and family Antarcticeratidae. This taxonomic placement would suggest the existence of an extremely ancient, previously unknown cephalopod lineage that had survived through several mass extinction events well into the early Cenozoic in the far southern latitudes, and the survival of orthocerid descendants into the Cenozoic. [1] Later that year, The Guardian ranked Antarcticeras as one of the top fossil discoveries of 2017. [3]
In 2018, Fuchs et al published a study refuting the previous classification of Antarcticeras as a new subclass of cephalopods. The poorly mineralized phragmocone was recovered as a transitional form between the mineralized, functional phragomocones seen in certain coleoids and the fully demineralized gladius seen in oegopsid squid. For this reason, Antarcticeras was proposed as the first instance of a fossilized squid shell, which would also indicate that squid gladii had developed remarkably late in the evolutionary history of cephalopods. The late development of the modern squid gladius was also found to support previous hypotheses of a Late Cretaceous origin for most extant decapodiform groups and a Cenozoic origin for modern squid, contrasting with other studies that had placed these divergences during the Paleozoic. It was also not ruled out that Antarcticeras may represent a fossil reworked from older geologic layers. [2]
Later in 2018, Doguzhaeva published a rebuttal to Fuchs et al, noting the presence of siphuncles and septa in Antarcticeras and the lack of these traits in modern oegopsids, and found the shell morphology of Antarcticeras to be unique among cephalopods, concluding that it was impossible of Antarcticeras to be a squid. The potential for Antarcticeras to be a reworked specimen was found to be unlikely due the lack of reworked material in the formation and the two specimens being found at different levels, although not impossible as fossil orthocones are known from Paleozoic formations in other parts of the Antarctic Peninsula; however, reworking would not refute the idea of Antarcticeras forming a unique cephalopod lineage. In addition, a Late Devonian orthocone from Timan Ridge in Russia was found to closely resemble Antarcticeras in siphuncle placement, and was thus cited as a potential Paleozoic representative of the Paracoleoidea. [4]
A cephalopod is any member of the molluscan class Cephalopoda such as a squid, octopus, cuttlefish, or nautilus. These exclusively marine animals are characterized by bilateral body symmetry, a prominent head, and a set of arms or tentacles modified from the primitive molluscan foot. Fishers sometimes call cephalopods "inkfish", referring to their common ability to squirt ink. The study of cephalopods is a branch of malacology known as teuthology.
Ammonoids are a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids than they are to shelled nautiloids such as the living Nautilus species. The earliest ammonites appeared during the Devonian, with the last species vanishing during or soon after the Cretaceous–Paleogene extinction event.
Coleoidea or Dibranchiata, is one of the two subclasses of cephalopods, containing all the various taxa popularly thought of as "soft-bodied" or "shell-less". Unlike its extant sister group Nautiloidea, whose members have a rigid outer shell for protection, the coleoids have at most an internal shell called cuttlebone or gladius that is used for buoyancy or as muscle anchorage. Some species, notably incirrate octopuses, have lost their cuttlebone altogether, while in some it has been replaced by a chitinous support structure. A unique trait of the group is the ability to edit their own RNA.
Belemnoids are an extinct group of marine cephalopod, very similar in many ways to the modern squid and closely related to the modern cuttlefish. Like them, the belemnoids possessed an ink sac, but, unlike the squid, they possessed ten arms of roughly equal length, and no tentacles. The name "belemnoid" comes from the Greek word βέλεμνον, belemnon meaning "a dart or arrow" and the Greek word είδος, eidos meaning "form".
Nautiloids are a group of marine cephalopods (Mollusca) which originated in the Late Cambrian and are represented today by the living Nautilus and Allonautilus. Fossil nautiloids are diverse and speciose, with over 2,500 recorded species. They flourished during the early Paleozoic era, when they constituted the main predatory animals. Early in their evolution, nautiloids developed an extraordinary diversity of shell shapes, including coiled morphologies and giant straight-shelled forms (orthocones). Only a handful of rare coiled species, the nautiluses, survive to the present day.
Orthoceras is a genus of extinct nautiloid cephalopod restricted to Middle Ordovician-aged marine limestones of the Baltic States and Sweden. This genus is sometimes called Orthoceratites. Note it is sometimes misspelled as Orthocera, Orthocerus or Orthoceros.
Endocerida is an extinct nautiloid order, a group of cephalopods from the Lower Paleozoic with cone-like deposits in their siphuncle. Endocerida was a diverse group of cephalopods that lived from the Early Ordovician possibly to the Late Silurian. Their shells were variable in form. Some were straight (orthoconic), others curved (cyrtoconic); some were long (longiconic), others short (breviconic). Some long-shelled forms like Endoceras attained shell lengths close to 6 metres (20 ft). The related Cameroceras is anecdotally reported to have reached lengths approaching 9 metres (30 ft), but these claims are problematic. The overwhelming majority of endocerids and nautiloids in general are much smaller, usually less than a meter long when fully grown.
The phragmocone is the chambered portion of the shell of a cephalopod. It is divided by septa into camerae.
An orthocone is an unusually long straight shell of a nautiloid cephalopod. During the 18th and 19th centuries, all shells of this type were named Orthoceras, creating a wastebasket taxon, but it is now known that many groups of nautiloids developed or retained this type of shell.
Orthocerida, also known as the Michelinocerida, is an order of extinct orthoceratoid cephalopods that lived from the Early Ordovician possibly to the Late Triassic. A fossil found in the Caucasus suggests they may even have survived until the Early Cretaceous, and the Eocene fossil Antarcticeras is sometimes considered a descendant of the orthocerids although this is disputed. They were most common however from the Ordovician to the Devonian.
Octopodiformes is a superorder of the subclass Coleoidea, comprising the octopuses and the vampire squid. All living members of Octopodiformes have eight arms, either lacking the two tentacles of squid or modifying the tentacles into thin filaments. Octopodiformes is often considered the crown group of octopuses and vampire squids, including all descendants of their common ancestor. Some authors use the term Vampyropoda for the same general category, though others use "Vampyropoda" to refer to the total group. Another term is Octobranchia, referring to cephalopods without prominent tentacles.
Aulacocerida is an order of primitive coleoid cephalopods, possibly derived from michelinoceraitids (Orthocerida) early in the Devonian, which in turn gave rise to the Belemnites.
Belemnotheutis is an extinct coleoid cephalopod genus from the middle and upper Jurassic, related to but morphologically distinct from belemnites. Belemnotheutis fossils are some of the best preserved among coleoids. Remains of soft tissue are well-documented in some specimens, even down to microscopic muscle tissue. In 2008, a group of paleontologists even recovered viable ink from ink sacs found in several specimens.
Phragmoteuthis is a genus of extinct coleoid cephalopod known from the late Triassic to the lower Jurassic. Its soft tissue has been preserved; some specimens contain intact ink sacs. It had an internal phragmocone and unknown numbers of arms.
Orthoceratoidea is a major subclass of nautiloid cephalopods. Members of this subclass usually have orthoconic (straight) to slightly cyrtoconic (curved) shells, and central to subcentral siphuncles which may bear internal deposits. Orthoceratoids are also characterized by dorsomyarian muscle scars, extensive cameral deposits, and calciosiphonate connecting rings with a porous and calcitic inner layer.
The cephalopods have a long geological history, with the first nautiloids found in late Cambrian strata, and purported stem-group representatives present in the earliest Cambrian lagerstätten.
Shimanskya is a late Carboniferous fossil tentatively interpreted as an early spirulid.
Hematitida is a group of coleoid cephalopods known from the early Carboniferous Period. They are the oldest definite coleoids, although there are controversial claims for even older coleoids from the Devonian. Fossil hematitidans have so far been found only in Arkansas and Utah of the United States. The only family described so far is Hematitidae.
Belemnitida is an extinct order of squid-like cephalopods that existed from the Late Triassic to Late Cretaceous. Unlike squid, belemnites had an internal skeleton that made up the cone. The parts are, from the arms-most to the tip: the tongue-shaped pro-ostracum, the conical phragmocone, and the pointy guard. The calcitic guard is the most common belemnite remain. Belemnites, in life, are thought to have had 10 hooked arms and a pair of fins on the guard. The chitinous hooks were usually no bigger than 5 mm (0.20 in), though a belemnite could have had between 100 and 800 hooks in total, using them to stab and hold onto prey.
This list, 2018 in paleomalacology, is a list of new taxa of ammonites and other fossil cephalopods, as well as fossil gastropods, bivalves and other molluscs that are scheduled to be described during the year 2018, as well as other significant discoveries and events related to molluscan paleontology that are scheduled to occur in the year 2018.