August 1972 solar storms

Last updated

Solar storms of August 1972
Seahorse flare.jpg
The "seahorse flare", an intense two-ribbon solar flare, erupting from active region McMath 11976 on 7 August 1972 as recorded by the Big Bear Solar Observatory (BBSO)
Geomagnetic storm
Initial onset2 August 1972 (1972-08-02)
Dissipated11 August 1972 (1972-08-11)
ImpactsSatellite wear and imaging errors; detonation of magnetic-influence sea mines near Haiphong, North Vietnam; localized electric grid and telephone line interruptions

Part of solar cycle 20

The solar storms of August 1972 were a historically powerful series of solar storms with intense to extreme solar flare, solar particle event, and geomagnetic storm components in early August 1972, during solar cycle 20. The storm caused widespread electric- and communication-grid disturbances through large portions of North America as well as satellite disruptions. On 4 August 1972 the storm caused the accidental detonation of numerous U.S. naval mines near Haiphong, North Vietnam. [1] The coronal mass ejection (CME)'s transit time from the Sun to the Earth is the fastest ever recorded. [2]

Contents

Solar-terrestrial characteristics

Sunspot region

The most significant detected solar flare activity occurred from 2 to 11 August. Most of the significant solar activity emanated from active sunspot region McMath 11976 (MR 11976; active regions being clusters of sunspot pairs). [3] [4] [5] [6] McMath 11976 was extraordinarily magnetically complex. Its size was large although not exceptionally so. [7] McMath 11976 produced 67 solar flares (4 of these X-class) during the time it was facing Earth, from 29 July to 11 August. [8] It also produced multiple relatively rare white light flares over multiple days. [1] The same active area was long-lived. It persisted through five solar rotation cycles, first receiving the designation as Region 11947 as it faced Earth, going unseen as it rotated past the far side of the Sun, then returning Earthside as Region 11976, before cycling as Regions 12007, 12045, and 12088, respectively. [9]

Flare of 4 August

Electromagnetic effects

The 4 August flare was among the largest since records began. [10] It saturated the Solrad 9 X-ray sensor at approximately X5.3 but was estimated to be in the vicinity of X20, [11] the threshold of the very rarely reached R5 on the NOAA radio blackout space weather scale. [12] A radio burst of 76,000 sfu was measured at 1 GHz. [8] This was an exceptionally long duration flare, generating X-ray emissions above background level for more than 16 hours. Rare emissions in the gamma ray (-ray) spectrum were detected for the first time, on both 4 and 7 August, by the Orbiting Solar Observatory (OSO 7). [13] The broad spectrum electromagnetic emissions of the largest flare are estimated to total 1-5 x 1032 ergs in energy released. [14]

CMEs

The arrival time of the associated coronal mass ejection (CME) and its coronal cloud, 14.6 hours, remains the record shortest duration as of November 2023, indicating an exceptionally fast and typically an exceptionally geoeffective event (normal transit time is two to three days). A preceding series of solar flares and CMEs cleared the interplanetary medium of particles, enabling the rapid arrival in a process similar to the July 2012 solar storm. [2] Normalizing the transit times of other known extreme events to a standard 1 AU to account for the varying distance of the Earth from the Sun throughout the year, one study found the ultrafast 4 August flare to be an outlier to all other events, even compared to the great solar storm of 1859, the overall most extreme known solar storm, which is known as the "Carrington Event". [15] This corresponds to an ejecta speed of an estimated 2,850 km/s (1,770 mi/s). [16]

The near Earth vicinity solar wind velocity may also be record-breaking and is calculated to have exceeded 2,000 km/s (1,200 mi/s) (about 0.7% of light speed). The velocity was not directly measurable as instrumentation was off-scale high. [17] [18] Analysis of a Guam magnetogram indicated a shockwave traversing the magnetosphere at 3,080 km/s (1,910 mi/s) and astonishing sudden storm commencement (SSC) time of 62 s. [19] Estimated magnetic field strength of 73-103 nT and electric field strength of >200 mV/m was calculated at 1 AU. [20]

Solar particle event

Reanalysis based on IMP-5 (a.k.a. Explorer 41) space solar observatory data suggests that >10-MeV ion flux reached 70,000 particles·s-1·sr-1·cm-2 (i.e. 70,000 particles per second, per steradian, per square centimeter; see Radiance) bringing it near the exceedingly rarely reached NOAA S5 level on the solar radiation scale. [12] Fluxes at other energy levels, from soft to hard, at >1 MeV, >30 MeV, and >60 MeV, also reached extreme levels, as well as inferred for >100 MeV. [21] [1] The particle storm led to northern hemisphere polar stratospheric ozone depletion of about 46% at 50 km (31 mi) altitude for several days before the atmosphere recovered and which persisted for 53 days at the lower altitude of 39 km (24 mi). [22]

The intense solar wind and particle storm associated with the CMEs led to one of the largest decreases in cosmic ray radiation from outside the Solar System, known as a Forbush decrease, ever observed. [23] Solar energetic particle (SEP) onslaught was so strong that the Forbush decrease in fact partially abated. [24] SEPs reached the Earth's surface, causing a ground level event (GLE). [25]

Geomagnetic storm

The 4 August flare and ejecta caused significant to extreme effects on the Earth's magnetosphere, which responded in an unusually complex manner. [1] The disturbance storm time index (Dst) was only −125 nT, falling merely within the relatively common "intense" storm category. Initially an exceptional geomagnetic response occurred and some extreme storming occurred locally later (some of these possibly within substorms), but arrival of subsequent CMEs with northward oriented magnetic fields is thought to have shifted the interplanetary magnetic field (IMF) from an initial southward to northward orientation, thus substantially suppressing geomagnetic activity as the solar blast was largely deflected away from rather than toward Earth. An early study found an extraordinary asymmetry range of ≈450 nT. [26] A 2006 study found that if a favorable IMF southward orientation were present that the Dst may have surpassed −1,600 nT, comparable to the 1859 Carrington Event. [27]

Magnetometers in Boulder, Colorado, Honolulu, Hawaii, [28] and elsewhere went off-scale high. Stations in India recorded geomagnetic sudden impulses (GSIs) of 301-486 nT. [29] Estimated AE index peaked at over 3,000 nT and Kp reached 9 at several hourly intervals [30] (corresponding to NOAA G5 level). [12]

The magnetosphere compressed rapidly and substantially with the magnetopause reduced to 4-5 RE and the plasmapause (boundary of the plasmasphere, or lower magnetosphere) reduced to 2 RE or less. This is a contraction of at least one half and up to two-thirds the size of the magnetosphere under normal conditions, to a distance of less than 20,000 km (12,000 mi). [31] Solar wind dynamic pressure increased to about 100 times normal, based upon data from Prognoz 1. [32]

Impacts

Spacecraft

Astronomers first reported unusual flares on 2 August, later corroborated by orbiting spacecraft. On 3 August, Pioneer 9 detected a shock wave and sudden increase in solar wind speed [33] from approximately 217–363 mi/s (349–584 km/s). [34] A shockwave passed Pioneer 10, which was 2.2 AU from the Sun at the time. [4] The greatly constricted magnetosphere caused many satellites to cross outside Earth's protective magnetic field, such boundary crossings into the magnetosheath led to erratic space weather conditions and potentially destructive solar particle bombardment. [35] The Intelsat IV F-2 communications satellite solar panel arrays power generation was degraded by 5%, about 2 years worth of wear. [36] An on-orbit power failure ended the mission of a Defense Satellite Communications System (DSCS II) satellite. [37] Disruptions of Defense Meteorological Satellite Program (DMSP) scanner electronics caused anomalous dots of light in the southern polar cap imagery. [1]

Terrestrial effects and aurora

On 4 August, an aurora shone so luminously that shadows were cast on the southern coast of the United Kingdom [1] and shortly later as far south as Bilbao, Spain at magnetic latitude 46°. [38] Extending to 5 August, intense geomagnetic storming continued with bright red (a relatively rare color associated with extreme events) and fast-moving aurora visible at midday from dark regions of the Southern Hemisphere. [39]

Radio frequency (RF) effects were rapid and intense. Radio blackouts commenced nearly instantaneously on the sunlit side of Earth on HF and other vulnerable bands. A nighttime mid-latitude E layer developed. [40]

Geomagnetically induced currents (GICs) were generated and produced significant electrical grid disturbances throughout Canada and across much of eastern and central United States, with strong anomalies reported as far south as Maryland and Ohio, moderate anomalies in Tennessee, and weak anomalies in Alabama and north Texas. The voltage collapse of 64% on the North Dakota to Manitoba interconnection would have been sufficient to cause a system breakup if occurring during high export conditions on the line, which would have precipitated a large power outage. Many U.S. utilities in these regions reported no disturbances, with the presence of igneous rock geology a suspected factor, as well as geomagnetic latitude and differences in operational characteristics of respective electrical grids. [41] Manitoba Hydro reported that power going the other way, from Manitoba to the U.S., plummeted 120 MW within a few minutes. Protective relays were repeatedly activated in Newfoundland. [1]

An outage was reported along American Telephone and Telegraph (now AT&T)'s L4 coaxial cable between Illinois and Iowa. Magnetic field variations (dB/dt) of ≈800 nT/min were estimated locally at the time [31] and the peak rate of change of magnetic field intensity reached >2,200 nT/min in central and western Canada, although the outage was most likely caused by swift intensification of the eastward electrojet of the ionosphere. [42] AT&T also experienced a surge of 60 volts on their telephone cable between Chicago and Nebraska. [34] Exceeding the high-current shutdown threshold, an induced electric field was measured at 7.0 V/km. The storm was detected in low-latitude areas such as the Philippines and Brazil, as well as Japan. [1]

Military operations

American naval mine (left) explodes in Haiphong during U.S. Navy minesweeping (March 1973) Mine explosion Operation End Sweep 9 March 1973.jpg
American naval mine (left) explodes in Haiphong during U.S. Navy minesweeping (March 1973)

The U.S. Air Force's Vela nuclear detonation detection satellites mistook that an explosion occurred, but this was quickly dealt with by personnel monitoring the data in real-time. [1]

The U.S. Navy concluded, as shown in declassified documents, [43] that the seemingly spontaneous detonation of dozens of Destructor magnetic-influence sea mines (DSTs) within about 30 seconds in the Hon La area (magnetic latitude ≈9°) was highly likely the result of an intense solar storm. One account claims that 4,000 mines were detonated. [44] It was known that solar storms caused terrestrial geomagnetic disturbances but it was as yet unknown to the military whether these effects could be sufficiently intense. It was confirmed as possible in a meeting of Navy investigators at the NOAA Space Environment Center (SEC) [2] as well as by other facilities and experts. [1]

Human spaceflight

Although it occurred between Apollo missions, the storm has long been chronicled within NASA. Apollo 16 returned to Earth on April 27, 1972, with the subsequent (and ultimately final) Apollo Moon landing scheduled to depart on December 7 that same year. Had a mission been taking place during August, those inside the Apollo command module would have been shielded from 90% of the incoming radiation. However, this reduced dose could still have caused acute radiation sickness if the astronauts were located outside the protective magnetic field of Earth, which was the case for much of a lunar mission. An astronaut engaged in EVA in orbit or on a moonwalk could have experienced severe radiation poisoning, or even absorbed a potentially lethal dose. Regardless of location, an astronaut would have suffered an enhanced risk of contracting cancer after being exposed to that amount of radiation.

This was one of only a handful of solar storms which have occurred in the Space Age that could cause severe illness, and was potentially the most hazardous. [45] Had the most intense solar activity of early August occurred during a mission, it would have forced the crew to abort the flight and resort to contingency measures, including an emergency return and landing for medical treatment. [46]

Implications for heliophysics and society

The storm was an important event in the field of heliophysics, the study of space weather, with numerous studies published in the next few years and throughout the 1970s and 1980s, as well as leading to several influential internal investigations and to significant policy changes. Almost fifty years after the fact, the storm was reexamined in an October 2018 article published in the American Geophysical Union (AGU) journal Space Weather. The initial and early studies as well as the later reanalysis studies were only possible due to initial monitoring facilities installed during the International Geophysical Year (IGY) in 1957-1958 and subsequent global scientific cooperation to maintain the data sets. That initial terrestrial data from ground stations and balloons was later combined with spaceborne observatories to form far more complete information than had been previously possible, with this storm being one of the first widely documented of the then young Space Age. It convinced both the military and NASA to take space weather seriously and accordingly devote resources to its monitoring and study. [1]

The authors of the 2018 paper compared the 1972 storm to the great storm of 1859 in some aspects of intensity. They posit that it was a Carrington-class storm. [1] Other researchers conclude that the 1972 event could have been comparable to 1859 for geomagnetic storming if magnetic field orientation parameters were favorable, [20] [47] or as a "failed Carrington-type storm" based on related considerations, [48] which is also the finding of a 2013 Royal Academy of Engineering report. [49]

See also

Related Research Articles

<span class="mw-page-title-main">Magnetopause</span> Abrupt boundary between a magnetosphere and the surrounding plasma

The magnetopause is the abrupt boundary between a magnetosphere and the surrounding plasma. For planetary science, the magnetopause is the boundary between the planet's magnetic field and the solar wind. The location of the magnetopause is determined by the balance between the pressure of the dynamic planetary magnetic field and the dynamic pressure of the solar wind. As the solar wind pressure increases and decreases, the magnetopause moves inward and outward in response. Waves along the magnetopause move in the direction of the solar wind flow in response to small-scale variations in the solar wind pressure and to Kelvin–Helmholtz instability.

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of particle species found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron. There are also rarer traces of some other nuclei and isotopes such as phosphorus, titanium, chromium, and nickel's isotopes 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Aurora</span> Atmospheric effect caused by the solar wind

An aurora , also commonly known as the northern lights or southern lights, is a natural light display in Earth's sky, predominantly seen in high-latitude regions. Auroras display dynamic patterns of brilliant lights that appear as curtains, rays, spirals, or dynamic flickers covering the entire sky.

<span class="mw-page-title-main">Solar flare</span> Eruption of electromagnetic radiation

A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.

<span class="mw-page-title-main">Space weather</span> Branch of space physics and aeronomy

Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the varying conditions within the Solar System and its heliosphere. This includes the effects of the solar wind, especially on the Earth's magnetosphere, ionosphere, thermosphere, and exosphere. Though physically distinct, space weather is analogous to the terrestrial weather of Earth's atmosphere. The term "space weather" was first used in the 1950s and popularized in the 1990s. Later, it prompted research into "space climate", the large-scale and long-term patterns of space weather.

<span class="mw-page-title-main">Geomagnetic storm</span> Disturbance of the Earths magnetosphere

A geomagnetic storm, also known as a magnetic storm, is a temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave.

<span class="mw-page-title-main">Coronal mass ejection</span> Ejecta from the Suns corona

A coronal mass ejection (CME) is a significant ejection of magnetic field and accompanying plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.

A solar storm is a disturbance on the Sun, which can emanate outward across the heliosphere, affecting the entire Solar System, including Earth and its magnetosphere, and is the cause of space weather in the short-term with long-term patterns comprising space climate.

<span class="mw-page-title-main">Advanced Composition Explorer</span> NASA satellite of the Explorer program

Advanced Composition Explorer is a NASA Explorer program satellite and space exploration mission to study matter comprising energetic particles from the solar wind, the interplanetary medium, and other sources.

A sudden ionospheric disturbance (SID) is any one of several ionospheric perturbations, resulting from abnormally high ionization/plasma density in the D region of the ionosphere and caused by a solar flare and/or solar particle event (SPE). The SID results in a sudden increase in radio-wave absorption that is most severe in the upper medium frequency (MF) and lower high frequency (HF) ranges, and as a result often interrupts or interferes with telecommunications systems.

<span class="mw-page-title-main">Solar cycle 24</span> Solar activity from December 2008 to December 2019

Solar cycle 24 is the most recently completed solar cycle, the 24th since 1755, when extensive recording of solar sunspot activity began. It began in December 2008 with a minimum smoothed sunspot number of 2.2, and ended in December 2019. Activity was minimal until early 2010. It reached its maximum in April 2014 with a 23 months smoothed sunspot number of 81.8. This maximum value was substantially lower than other recent solar cycles, down to a level which had not been seen since cycles 12 to 15 (1878-1923).

<span class="mw-page-title-main">Ionospheric storm</span>

Ionospheric storms are storms which contain varying densities of energised electrons in the ionosphere as produced from the Sun. Ionospheric storms are caused by geomagnetic storms. They are categorised into positive and negative storms, where positive storms have a high density of electrons and negative storms contain a lower density. The total electron content (TEC) is used to measure these densities, and is a key variable used in data to record and compare the intensities of ionospheric storms.

<span class="mw-page-title-main">Carrington Event</span> Geomagnetic storm in 1859

The Carrington Event was the most intense geomagnetic storm in recorded history, peaking on 1–2 September 1859 during solar cycle 10. It created strong auroral displays that were reported globally and caused sparking and even fires in telegraph stations. The geomagnetic storm was most likely the result of a coronal mass ejection (CME) from the Sun colliding with Earth's magnetosphere.

<span class="mw-page-title-main">March 1989 geomagnetic storm</span> An exceptionally powerful geomagnetic storm that struck the Earth on March 13, 1989

The March 1989 geomagnetic storm occurred as part of severe to extreme solar storms during early to mid March 1989, the most notable being a geomagnetic storm that struck Earth on March 13. This geomagnetic storm caused a nine-hour outage of Hydro-Québec's electricity transmission system. The onset time was exceptionally rapid. Other historically significant solar storms occurred later in 1989, during a very active period of solar cycle 22.

<span class="mw-page-title-main">Solar cycle 20</span> Solar activity from October 1964 to March 1976

Solar cycle 20 was the twentieth solar cycle since 1755, when extensive recording of solar sunspot activity began. The solar cycle lasted 11.4 years, beginning in October 1964 and ending in March 1976. The maximum smoothed sunspot number observed during the solar cycle was 156.6, and the starting minimum was 14.3. During the minimum transit from solar cycle 20 to 21, there were a total of 272 days with no sunspots.

<span class="mw-page-title-main">Bastille Day solar storm</span> Solar storm on 14–16 July 2000

The Bastille Day solar storm was a powerful solar storm on 14–16 July 2000 during the solar maximum of solar cycle 23. The storm began on the national day of France, Bastille Day. It involved a solar flare, a solar particle event, and a coronal mass ejection which caused a severe geomagnetic storm.

<span class="mw-page-title-main">Solar particle event</span> Solar phenomenon

In solar physics, a solar particle event (SPE), also known as a solar energetic particle event or solar radiation storm, is a solar phenomenon which occurs when particles emitted by the Sun, mostly protons, become accelerated either in the Sun's atmosphere during a solar flare or in interplanetary space by a coronal mass ejection shock. Other nuclei such as helium and HZE ions may also be accelerated during the event. These particles can penetrate the Earth's magnetic field and cause partial ionization of the ionosphere. Energetic protons are a significant radiation hazard to spacecraft and astronauts.

<span class="mw-page-title-main">Solar cycle 25</span> Solar activity from 2019 to about 2030

Solar cycle 25 is the current solar cycle, the 25th since 1755, when extensive recording of solar sunspot activity began. It began in December 2019 with a minimum smoothed sunspot number of 1.8. It is expected to continue until about 2030.

<span class="mw-page-title-main">Solar phenomena</span> Natural phenomena within the Suns atmosphere

Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. They take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 Knipp, Delores J.; B. J. Fraser; M. A. Shea; D. F. Smart (2018). "On the Little-Known Consequences of the 4 August 1972 Ultra-Fast Coronal Mass Ejecta: Facts, Commentary and Call to Action". Space Weather. 16 (11): 1635–1643. Bibcode:2018SpWea..16.1635K. doi: 10.1029/2018SW002024 .
  2. 1 2 3 Carter, Brett (November 7, 2018). "Blasts from the Past: How massive solar eruptions 'probably' detonated dozens of US sea mines". The Conversation. Retrieved 2018-11-16.
  3. Hakura, Yukio (1976). "Interdisciplinary summary of solar/interplanetary events during August 1972". Space Sci. Rev. 19 (4–5): 411–457. Bibcode:1976SSRv...19..411H. doi:10.1007/BF00210637. S2CID   121258572.
  4. 1 2 Smith, Edward J. (1976). "The August 1972 solar-terrestrial events: interplanetary magnetic field observations". Space Sci. Rev. 19 (4–5): 661–686. Bibcode:1976SSRv...19..661S. doi:10.1007/BF00210645. S2CID   122207841.
  5. Tanaka, K.; Y. Nakagawa (1973). "Force-free magnetic fields and flares of August 1972". Sol. Phys. 33 (1): 187–204. Bibcode:1973SoPh...33..187T. doi:10.1007/BF00152390. S2CID   119523856.
  6. Yang, Hai-Shou; H-M Chang; J. W. Harvey (1983). "Theory of quadrupolar sunspots and the active region of August, 1972". Sol. Phys. 84 (1–2): 139–151. Bibcode:1983SoPh...84..139Y. doi:10.1007/BF00157453. S2CID   121439688.
  7. Dodson, H. W.; E. R. Hedeman (1973). "Evaluation of the August 1972 region as a solar activity center of activity (McMath Plage 11976)". In Coffey, H. E. (ed.). Collected Data Reports on August 1972 Solar-Terrestrial Events. Report UAG-28. Vol. 1. Boulder, CO: NOAA. pp. 16–22. Bibcode:1973cdro.book.....C.
  8. 1 2 Bhonsle, R. V.; S. S. Degaonkar; S. K. Alurkar (1976). "Ground-based solar radio observations of the August 1972 events". Space Sci. Rev. 19 (4–5): 475=510. Bibcode:1976SSRv...19..475B. doi:10.1007/BF00210639. S2CID   121716617.
  9. "SGD Table: 1972". Solar Sunspot Regions. National Centers for Environmental Information. Retrieved 2018-11-21.
  10. Zirin, Harold; K. Tanaka (1973). "The flares of August 1972". Sol. Phys. 32 (1): 173–207. Bibcode:1973SoPh...32..173Z. doi:10.1007/BF00152736. S2CID   119016972.
  11. Ohshio, M. (1974). "Solar-terrestrial disturbances of August 1972. Solar x-ray flares and their corresponding sudden ionospheric disturbances". Journal of the Radio Research Laboratories (in Japanese). 21 (106). Koganei, Tokyo: 311–340.
  12. 1 2 3 "NOAA Space Weather Scales" (PDF). NOAA. April 7, 2011. Retrieved November 30, 2018.
  13. Chupp, E. L.; Forrest, D. J.; Higbie, P. R.; Suri, A. N.; Tsai, C.; Dunphy, P. P. (1973). "Solar Gamma Ray Lines observed during the Solar Activity of August 2 to August 11, 1972". Nature. 241 (5388): 333–335. Bibcode:1973Natur.241..333C. doi:10.1038/241333a0. S2CID   4172523.
  14. Lin, R. P.; H. S. Hudson (1976). "Non-thermal processes in large solar flares". Solar Physics. 50 (1): 153–178. Bibcode:1976SoPh...50..153L. doi:10.1007/BF00206199. S2CID   120979736.
  15. Freed, A. J.; C. T. Russell (2014). "Travel time classification of extreme solar events: Two families and an outlier". Geophys. Res. Lett. 41 (19): 6590–6594. Bibcode:2014GeoRL..41.6590F. doi: 10.1002/2014GL061353 .
  16. Vaisberg, O. L.; G. N. Zastenker (1976). "Solar wind and magnetosheath observations at Earth during August 1972". Space Sci. Rev. 19 (4–5): 687–702. Bibcode:1976SSRv...19..687V. doi:10.1007/BF00210646. S2CID   120128016.
  17. Cliver, E. W.; J. Faynman; H. B. Garrett (1990). "An Estimate of the Maximum Speed of the Solar Wind, 1938-1989". J. Geophys. Res. 95 (A10): 17103–17112. Bibcode:1990JGR....9517103C. doi:10.1029/JA095iA10p17103.
  18. Cliver, E. W.; J. Faynman; H. B. Garrett (1990). "Flare-associated solar wind disturbances with short (<20 hr) transit times to Earth". Solar-Terrestrial Predictions: Proceedings of a Workshop at Leura, Australia. Boulder, Colorado: NOAA Environ. Res. Lab. pp. 348–358.
  19. Araki, T.; T. Takeuchi; Y. Araki (2004). "Rise time of geomagnetic sudden commencements —Statistical analysis of ground geomagnetic data—". Earth Planets Space. 56 (2): 289–293. Bibcode:2004EP&S...56..289A. doi: 10.1186/BF03353411 .
  20. 1 2 Tsurutani, B. T.; W. D. Gonzalez; G. S. Lakhina; S. Alex (2003). "The extreme magnetic storm of 1–2 September 1859". J. Geophys. Res. 108 (A7): 1268. Bibcode:2003JGRA..108.1268T. doi: 10.1029/2002JA009504 .
  21. Jiggens, Peter; Marc-Andre Chavy-Macdonald; Giovanni Santin; Alessandra Menicucci; Hugh Evans; Alain Hilgers (2014). "The magnitude and effects of extreme solar particle events". J. Space Weather Space Clim. 4: A20. Bibcode:2014JSWSC...4A..20J. doi: 10.1051/swsc/2014017 .
  22. Reagan, J. B.; R. E. Meyerott; R. W. Nightingale; R. C. Gunton; R. G. Johnson; J. E. Evans; W. L. Imhof; D. F. Heath; A. J. Krueger (1981). "Effects of the August 1972 solar particle events on stratospheric ozone". J. Geophys. Res. 86 (A3): 1473–1494. Bibcode:1981JGR....86.1473R. doi:10.1029/JA086iA03p01473.
  23. Levy, E. H.; S. P. Duggal; M. A. Pomerantz (1976). "Adiabatic Fermi acceleration of energetic particles between converging interplanetary shock waves". J. Geophys. Res. 81 (1): 51–59. Bibcode:1976JGR....81...51L. doi:10.1029/JA081i001p00051.
  24. Pomerantz, M. A.; S. P. Duggal (1973). "Record-breaking Cosmic Ray Storm stemming from Solar Activity in August 1972". Nature. 241 (5388): 331–333. doi:10.1038/241331a0. S2CID   4271983.
  25. Kodama, M.; K. Murakami; M. Wada (1973). "Cosmic ray variations in August 1972". Proceedings of the 13th International Conference on Cosmic Rays, held in Denver, Colorado, Vol. 2. pp. 1680–1684.
  26. Kawasaki, K.; Y. Kamide; F. Yasuhara; S.-I Akasofu (1973). "Geomagnetic disturbances of August 4–9, 1972". In Coffey, H. E. (ed.). Collected Data Reports on August 1972 Solar-Terrestrial Events. Report UAG-28. Vol. 3. Boulder CO: NOAA. pp. 702–707. Bibcode:1973cdro.book.....C.
  27. Li, Xinlin; M. Temerin; B.T. Tsurutani; S. Alex (2006). "Modeling of 1–2 September 1859 super magnetic storm". Adv. Space Res. 38 (2): 273–279. Bibcode:2006AdSpR..38..273L. doi:10.1016/j.asr.2005.06.070.
  28. Matsushita, S. (1976). "Ionospheric and thermospheric responses during August 1972 storms — A review". Space Sci. Rev. 19 (4–5): 713–737. Bibcode:1976SSRv...19..713M. doi:10.1007/BF00210648. S2CID   122389878.
  29. Bhargava, B. N. (1973). "Low latitude observations of the geomagnetic field for the retrospective world interval July 26–August 14, 1972". In Coffey, H. E. (ed.). Collected Data Reports on August 1972 Solar-Terrestrial Events. Report UAG-28. Vol. 3. Boulder CO: NOAA. p. 743. Bibcode:1973cdro.book.....C.
  30. Tsurutani, Bruce T.; W. D. Gonzalez; F. Tang; Y. T. Lee; M. Okada; D. Park (1992). "Reply to L. J. Lanzerotti: Solar wind RAM pressure corrections and an estimation of the efficiency of viscous interaction". Geophys. Res. Lett. 19 (19): 1993–1994. Bibcode:1992GeoRL..19.1993T. doi:10.1029/92GL02239.
  31. 1 2 Anderson III, C. W.; L J. Lanzerotti; C. G. MacLennan (1974). "Outage of the L4 System and the Geomagnetic Disturbances of 4 August 1972". Bell System Technical Journal. 53 (9): 1817–1837. doi:10.1002/j.1538-7305.1974.tb02817.x.
  32. D'uston, C.; J. M. Bosqued; F. Cambou; V. V. Temny; G. N. Zastenker; O. L. Vaisberg; E. G. Eroshenko (1977). "Energetic properties of interplanetary plasma at the earth's orbit following the August 4, 1972 flare". Sol. Phys. 51 (1): 217–229. Bibcode:1977SoPh...51..217D. doi:10.1007/BF00240459. S2CID   121371952.
  33. Dryer, M.; Z. K. Smith; R. S. Steinolfson; J. D. Mihalov; J. H. Wolfe; J. -K. Chao (1976). "Interplanetary disturbances caused by the August 1972 solar flares as observed by Pioneer 9". J. Geophys. Res. 81 (25): 4651–4663. Bibcode:1976JGR....81.4651D. doi:10.1029/JA081i025p04651.
  34. 1 2 "Major Solar Flare Could Have Been Lethal (1972)". NASA: Goddard Space Flight Center. Retrieved November 19, 2018.
  35. Cahill, L. J. Jr.; T. L. Skillman (1977). "The magnetopause at 5.2 RE in August 1972: Magnetopause motion". J. Geophys. Res. 82 (10): 1566–1572. Bibcode:1977JGR....82.1566C. doi:10.1029/JA082i010p01566.
  36. Rauschenbach, Hans S. (1980). Solar cell array design handbook: The principles and technology of photovoltaic energy conversion. New York: Nostrand Reinhold Co.
  37. Shea, M. A.; D. F.Smart (1998). "Space weather: The effects on operations in space". Adv. Space Res. 22 (1): 29–38. Bibcode:1998AdSpR..22...29S. doi:10.1016/S0273-1177(97)01097-1.
  38. McKinnon, J. A.; et al. (1972). August 1972 Solar Activity and Related Geophysical Effects. NOAA Technical Memorandum ERL SEL-22. Boulder, CO: NOAA Space Environment Laboratory.
  39. Akasofu, S. -I. (1974). "The Midday Red Aurora Observed at the South Pole on August 5, 1972". J. Geophys. Res. 79 (19): 2904–2910. Bibcode:1974JGR....79.2904A. doi:10.1029/ja079i019p02904.
  40. Odintsova, I. N.; L. N. Leshchenko; K. N. Valileive; G. V. Givishvili (1973). "On the geo-activity of the solar flares of 2, 4, 7 and 11 August 1972". In Coffey, H. E. (ed.). Collected data reports on August 1972 solar-terrestrial events. Report UAG-28. Vol. 3. Boulder, CO: NOAA. pp. 708–716. Bibcode:1973cdro.book.....C.
  41. Albertson, V.D.; J.M. Thorson (1974). "Power System Disturbances During A K-8 Geomagnetic Storm: August 4, 1972". IEEE Transactions on Power Apparatus and Systems. PAS-93 (4): 1025–1030. Bibcode:1974ITPAS..93.1025A. doi:10.1109/TPAS.1974.294046.
  42. Boteler, D. H.; G. Jansen van Beek (1999). "August 4, 1972 revisited: A new look at the geomagnetic disturbance that caused the L4 cable system outage". Geophys. Res. Lett. 26 (5): 577–580. Bibcode:1999GeoRL..26..577B. doi: 10.1029/1999GL900035 .
  43. "U.S. Navy Report, Mine Warfare Project Office - The Mining of North Vietnam, 8 May 1972 to 14 January 1973". Texas Tech: Vietnam Center and Archive. 20 January 2017. Retrieved November 17, 2018.
  44. Gonzales, Michael Jr. "The Forgotten History; The Mining Campaigns of Vietnam 1967-1973". Angelo State University. Archived from the original on 7 November 2021. Retrieved 18 November 2018.
  45. Lockwood, Mike; M. Hapgood (2007). "The Rough Guide to the Moon and Mars" (PDF). Astron. Geophys. 48 (6): 11–17. Bibcode:2007A&G....48f..11L. doi: 10.1111/j.1468-4004.2007.48611.x .
  46. Phillips, Tony (November 9, 2018). "A Blast from the Past (Wartime Space Weather in Vietnam". SpaceWeather.com. Retrieved 2018-11-16.
  47. Baker, D. N.; X. Li; A. Pulkkinen; C. M. Ngwira; M. L. Mays; A. B. Galvin; K. D. C. Simunac (2013). "A major solar eruptive event in July 2012: Defining extreme space weather scenarios". Space Weather. 11 (10): 585–691. Bibcode:2013SpWea..11..585B. doi:10.1002/swe.20097.
  48. Gonzalez, W. D.; E. Echer; A.L. Clúa de Gonzalez; B.T. Tsurutani; G.S. Lakhina (2011). "Extreme geomagnetic storms, recent Gleissberg cycles and space era-superintense storms". J. Atmos. Sol.-Terr. Phys. 73 (11–12): 1147–1453. Bibcode:2011JASTP..73.1447G. doi:10.1016/j.jastp.2010.07.023.
  49. Extreme space weather: impacts on engineered systems and infrastructure. London: Royal Academy of Engineering. 2013. ISBN   978-1-903496-95-4.

Further reading