Avoparcin

Last updated
Avoparcin
Avoparcins.svg
α-Avoparcin (R=H)
β-Avoparcin (R=Cl)
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.048.588 OOjs UI icon edit-ltr-progressive.svg
E number E715 (antibiotics)
KEGG
PubChem CID
UNII
  • InChI=1S/C89H102ClN9O36/c1-31-67(106)47(91)26-58(124-31)130-52-28-53-46(90)20-38(52)21-49-80(116)98-65(86(122)123)45-24-41(103)25-51(105)60(45)44-19-37(11-18-50(44)104)63(82(118)94-49)96-84(120)64-39-22-54(78(55(23-39)129-53)135-89-79(74(113)71(110)57(30-101)132-89)133-59-27-48(92)68(107)32(2)125-59)127-42-16-9-36(10-17-42)77(134-88-76(115)73(112)70(109)56(29-100)131-88)66(85(121)95-62(83(119)97-64)35-5-12-40(102)13-6-35)99-81(117)61(93-4)34-7-14-43(15-8-34)128-87-75(114)72(111)69(108)33(3)126-87/h5-20,22-25,28,31-33,47-49,56-59,61-77,79,87-89,93,100-115H,21,26-27,29-30,91-92H2,1-4H3,(H,94,118)(H,95,121)(H,96,120)(H,97,119)(H,98,116)(H,99,117)(H,122,123)/t31-,32-,33-,47+,48+,49-,56-,57+,58-,59-,61-,62-,63+,64+,65+,66+,67-,68-,69-,70-,71+,72+,73+,74-,75+,76+,77+,79+,87-,88-,89-/m0/s1
    Key: JWFVWARSGMYXRN-HTQQBIQNSA-N
  • (β) (β):InChI=1S/C89H101Cl2N9O36/c1-30-67(107)46(92)25-58(125-30)131-52-27-53-45(91)19-37(52)20-48-80(117)99-65(86(123)124)43-23-39(103)24-51(106)60(43)42-17-35(9-15-49(42)104)62(82(119)95-48)96-84(121)64-38-21-54(78(55(22-38)130-53)136-89-79(74(114)71(111)57(29-102)133-89)134-59-26-47(93)68(108)31(2)126-59)128-40-13-7-34(8-14-40)77(135-88-76(116)73(113)70(110)56(28-101)132-88)66(85(122)97-63(83(120)98-64)36-10-16-50(105)44(90)18-36)100-81(118)61(94-4)33-5-11-41(12-6-33)129-87-75(115)72(112)69(109)32(3)127-87/h5-19,21-24,27,30-32,46-48,56-59,61-77,79,87-89,94,101-116H,20,25-26,28-29,92-93H2,1-4H3,(H,95,119)(H,96,121)(H,97,122)(H,98,120)(H,99,117)(H,100,118)(H,123,124)/t30-,31-,32-,46+,47+,48-,56-,57+,58-,59-,61-,62+,63-,64+,65+,66+,67-,68-,69-,70-,71+,72+,73+,74-,75+,76+,77+,79+,87-,88-,89-/m0/s1
    Key: CASDGWYZIKZSQE-ZUWMJMDKSA-N
  • (α) (α):CN[C@H](C(=O)N[C@@H]5[C@H](O[C@@H]1O[C@@H](CO)[C@H](O)[C@@H](O)[C@H]1O)c2ccc(cc2)Oc%13cc7cc(Oc4cc(O[C@H]3C[C@@H](N)[C@@H](O)[C@H](C)O3)c(cc4Cl)C[C@@H]%10NC(=O)[C@H](NC(=O)[C@@H]7NC(=O)[C@@H](NC5=O)c6ccc(O)cc6)c8ccc(O)c(c8)c9c(O)cc(O)cc9[C@@H](NC%10=O)C(=O)O)c%13O[C@@H]%12O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%12O[C@H]%11C[C@@H](N)[C@@H](O)[C@H](C)O%11)c%15ccc(O[C@@H]%14O[C@@H](C)[C@H](O)[C@@H](O)[C@H]%14O)cc%15
  • (β) (β):CN[C@H](C(=O)N[C@@H]5[C@H](O[C@@H]1O[C@@H](CO)[C@H](O)[C@@H](O)[C@H]1O)c2ccc(cc2)Oc%13cc7cc(Oc4cc(O[C@H]3C[C@@H](N)[C@@H](O)[C@H](C)O3)c(cc4Cl)C[C@@H]%10NC(=O)[C@H](NC(=O)[C@@H]7NC(=O)[C@@H](NC5=O)c6ccc(O)c(Cl)c6)c8ccc(O)c(c8)c9c(O)cc(O)cc9[C@@H](NC%10=O)C(=O)O)c%13O[C@@H]%12O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%12O[C@H]%11C[C@@H](N)[C@@H](O)[C@H](C)O%11)c%15ccc(O[C@@H]%14O[C@@H](C)[C@H](O)[C@@H](O)[C@H]%14O)cc%15
Properties
C89H102ClN9O36 (α)
C89H101Cl2N9O36 (β)
Molar mass 1909.254 (α)
1943.699 (β)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Avoparcin is a glycopeptide antibiotic effective against Gram-positive bacteria. It has been used in agriculture as an additive to livestock feed to promote growth in chickens, pigs, and cattle. [1] It is also used as an aid in the prevention of necrotic enteritis in poultry. [1]

Avoparcin is a mixture of two closely related chemical compounds, known as α-avoparcin and β-avoparcin, which differ by the presence of an additional chlorine atom in β-avoparcin. Avoparcin also shares a chemical similarity with vancomycin. Because of this similarity, concern exists that widespread use of avoparcin in animals may lead to an increased prevalence of vancomycin-resistant strains of bacteria. [2] [3] [4] [5]

Avoparcin was once widely used in Australia and the European Union, but it is currently not permitted in either. [1] [6] It was never approved for use in the United States. [7]

Related Research Articles

<i>Bacillus cereus</i> Species of bacterium

Bacillus cereus is a Gram-positive rod-shaped bacterium commonly found in soil, food, and marine sponges. The specific name, cereus, meaning "waxy" in Latin, refers to the appearance of colonies grown on blood agar. Some strains are harmful to humans and cause foodborne illness due to their spore-forming nature, while other strains can be beneficial as probiotics for animals, and even exhibit mutualism with certain plants. B. cereus bacteria may be anaerobes or facultative anaerobes, and like other members of the genus Bacillus, can produce protective endospores. They have a wide range of virulence factors, including phospholipase C, cereulide, sphingomyelinase, metalloproteases, and cytotoxin K, many of which are regulated via quorum sensing. B. cereus strains exhibit flagellar motility.

<i>Staphylococcus aureus</i> Species of Gram-positive bacterium

Staphylococcus aureus is a Gram-positive spherically shaped bacterium, a member of the Bacillota, and is a usual member of the microbiota of the body, frequently found in the upper respiratory tract and on the skin. It is often positive for catalase and nitrate reduction and is a facultative anaerobe that can grow without the need for oxygen. Although S. aureus usually acts as a commensal of the human microbiota, it can also become an opportunistic pathogen, being a common cause of skin infections including abscesses, respiratory infections such as sinusitis, and food poisoning. Pathogenic strains often promote infections by producing virulence factors such as potent protein toxins, and the expression of a cell-surface protein that binds and inactivates antibodies. S. aureus is one of the leading pathogens for deaths associated with antimicrobial resistance and the emergence of antibiotic-resistant strains, such as methicillin-resistant S. aureus (MRSA), is a worldwide problem in clinical medicine. Despite much research and development, no vaccine for S. aureus has been approved.

<span class="mw-page-title-main">Vancomycin</span> Pharmaceutical drug

Vancomycin is a glycopeptide antibiotic medication used to treat a number of bacterial infections. It is recommended intravenously as a treatment for complicated skin infections, bloodstream infections, endocarditis, bone and joint infections, and meningitis caused by methicillin-resistant Staphylococcus aureus. Blood levels may be measured to determine the correct dose. Vancomycin is also taken by mouth as a treatment for severe Clostridium difficile colitis. When taken by mouth it is poorly absorbed.

<i>Enterococcus</i> Genus of bacteria

Enterococcus is a large genus of lactic acid bacteria of the phylum Bacillota. Enterococci are gram-positive cocci that often occur in pairs (diplococci) or short chains, and are difficult to distinguish from streptococci on physical characteristics alone. Two species are common commensal organisms in the intestines of humans: E. faecalis (90–95%) and E. faecium (5–10%). Rare clusters of infections occur with other species, including E. casseliflavus, E. gallinarum, and E. raffinosus.

<span class="mw-page-title-main">Drug resistance</span> Pathogen resistance to medications

Drug resistance is the reduction in effectiveness of a medication such as an antimicrobial or an antineoplastic in treating a disease or condition. The term is used in the context of resistance that pathogens or cancers have "acquired", that is, resistance has evolved. Antimicrobial resistance and antineoplastic resistance challenge clinical care and drive research. When an organism is resistant to more than one drug, it is said to be multidrug-resistant.

<i>Erysipelothrix rhusiopathiae</i> Species of bacterium causing disease in livestock, wild animals, and sometimes humans.

Erysipelothrix rhusiopathiae is a Gram-positive, catalase-negative, rod-shaped, non-spore-forming, nonacid-fast, nonmotile bacterium. Distributed worldwide, E. rhusiopathiae is primarily considered an animal pathogen, causing the disease known as erysipelas that may affect a wide range of animals. Pigs, turkeys and laying hens are most commonly affected, but cases have been reported in other mammals, birds, fish, and reptiles. In pigs, the disease is known as diamond skin disease. The bacterium can also cause zoonotic infections in humans, called erysipeloid. The human disease called erysipelas is not caused by E. rhusiopathiae, but by various members of the genus Streptococcus.

Multiple drug resistance (MDR), multidrug resistance or multiresistance is antimicrobial resistance shown by a species of microorganism to at least one antimicrobial drug in three or more antimicrobial categories. Antimicrobial categories are classifications of antimicrobial agents based on their mode of action and specific to target organisms. The MDR types most threatening to public health are MDR bacteria that resist multiple antibiotics; other types include MDR viruses, parasites.

Vancomycin-resistant <i>Enterococcus</i> Bacterial strains of Enterococcus that are resistant to the antibiotic vancomycin

Vancomycin-resistant Enterococcus, or vancomycin-resistant enterococci (VRE), are bacterial strains of the genus Enterococcus that are resistant to the antibiotic vancomycin.

<i>Enterococcus faecalis</i> Species of bacterium

Enterococcus faecalis – formerly classified as part of the group D Streptococcus system – is a Gram-positive, commensal bacterium inhabiting the gastrointestinal tracts of humans. Like other species in the genus Enterococcus, E. faecalis is found in healthy humans and can be used as a probiotic. The probiotic strains such as Symbioflor1 and EF-2001 are characterized by the lack of specific genes related to drug resistance and pathogenesis. As an opportunistic pathogen, E. faecalis can cause life-threatening infections, especially in the nosocomial (hospital) environment, where the naturally high levels of antibiotic resistance found in E. faecalis contribute to its pathogenicity. E. faecalis has been frequently found in reinfected, root canal-treated teeth in prevalence values ranging from 30% to 90% of the cases. Re-infected root canal-treated teeth are about nine times more likely to harbor E. faecalis than cases of primary infections.

Natural growth promoters (NGPs) are feed additives for farm animals.

Phytogenics are a group of natural growth promoters or non-antibiotic growth promoters used as feed additives, derived from herbs, spices or other plants. The term phytogenic feed additives was coined by an Austrian multinational feed additives company named Delacon, and was first introduced to the market in the 1980s.

<span class="mw-page-title-main">Oritavancin</span> Pharmaceutical drug

Oritavancin, sold under the brand name Orbactiv among others, is a semisynthetic glycopeptide antibiotic medication for the treatment of serious Gram-positive bacterial infections. Its chemical structure as a lipoglycopeptide is similar to vancomycin.

Enterococcus faecium is a Gram-positive, gamma-hemolytic or non-hemolytic bacterium in the genus Enterococcus. It can be commensal in the gastrointestinal tract of humans and animals, but it may also be pathogenic, causing diseases such as neonatal meningitis or endocarditis.

<span class="mw-page-title-main">Deep litter</span>

Deep litter is an animal housing system, based on the repeated spreading of straw or sawdust material in indoor booths. An initial layer of litter is spread for the animals to use for bedding material and to defecate in, and as the litter is soiled, new layers of litter are continuously added by the farmer. In this fashion, a deep litter bedding can build up to depths of 1–2 meters. "The usual procedure for built-up floor litter is to start with about 4 inches (100 mm) of fine litter material with additions of 1 to 2 inches later as needed without removal of the old. A depth of 6 to 12 inches is maintained by partial removals from time to time." Many consider this to be a natural means to disposing of animal feces. "The deep litter cultivation is a modern ecological breeding technique based on decomposing feces by microbiological methods, a post processing method for poultry Manure."

<span class="mw-page-title-main">Animal Drug Availability Act 1996</span> US law

The Animal Drug Availability Act 1996 (ADAA) is a United States federal law. President Clinton signed the ADAA into law in October 1996. While still obligated to public health concerns, the Act intends more rapid drug approval and medicated feed approval to assist the animal health industry.

Brachyspira pilosicoli is a gram-negative, anaerobic, host-associated spirochete that colonizes the intestinal tract of animals and humans. It appears as a characteristic "false brush border" due to its end-on attachment to enterocytes of the colon where it interferes with intestinal absorption. B. pilosicoli is unique from other Brachyspira species because it colonizes a variety of domestic animals including pigs, chickens, dogs, wild birds, rodents, and humans. It is the causative agent of intestinal spirochetosis in pigs, chickens and humans. In particular, B. pilosicoli has been described as an important colonic pathogen of pigs and chickens, causing colitis and diarrhea resulting in depressed rates of growth and impaired production on farms where infections with B. pilosicoli may be endemic. Bacterial attachment disrupts the colonic enterocytes and associated villi, causing the symptoms characteristic of intestinal spirochetosis. Additionally, B. pilosicoli is associated with clinical disease in human infections where it has implications for public health.

<i>Staphylococcus hyicus</i> Species of bacterium

Staphylococcus hyicus is a Gram-positive, facultatively anaerobic bacterium in the genus Staphylococcus. It consists of clustered cocci and forms white circular colonies when grown on blood agar. S. hyicus is a known animal pathogen. It causes disease in poultry, cattle, horses, and pigs. Most notably, it is the agent that causes porcine exudative epidermitis, also known as greasy pig disease, in piglets. S. hyicus is generally considered to not be zoonotic, however it has been shown to be able to cause bacteremia and sepsis in humans.

Aspergillus ochraceus is a mold species in the genus Aspergillus known to produce the toxin ochratoxin A, one of the most abundant food-contaminating mycotoxins, and citrinin. It also produces the dihydroisocoumarin mellein. It is a filamentous fungus in nature and has characteristic biseriate conidiophores. Traditionally a soil fungus, has now began to adapt to varied ecological niches, like agricultural commodities, farmed animal and marine species. In humans and animals the consumption of this fungus produces chronic neurotoxic, immunosuppressive, genotoxic, carcinogenic and teratogenic effects. Its airborne spores are one of the potential causes of asthma in children and lung diseases in humans. The pig and chicken populations in the farms are the most affected by this fungus and its mycotoxins. Certain fungicides like mancozeb, copper oxychloride, and sulfur have inhibitory effects on the growth of this fungus and its mycotoxin producing capacities.

<span class="mw-page-title-main">Antibiotic use in livestock</span> Use of antibiotics for any purpose in the husbandry of livestock

Antibiotic use in livestock is the use of antibiotics for any purpose in the husbandry of livestock, which includes treatment when ill (therapeutic), treatment of a group of animals when at least one is diagnosed with clinical infection (metaphylaxis), and preventative treatment (prophylaxis). Antibiotics are an important tool to treat animal as well as human disease, safeguard animal health and welfare, and support food safety. However, used irresponsibly, this may lead to antibiotic resistance which may impact human, animal and environmental health.

ESKAPE is an acronym comprising the scientific names of six highly virulent and antibiotic resistant bacterial pathogens including: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. This group of Gram-positive and Gram-negative bacteria can evade or 'escape' commonly used antibiotics due to their increasing multi-drug resistance (MDR). As a result, throughout the world, they are the major cause of life-threatening nosocomial or hospital-acquired infections in immunocompromised and critically ill patients who are most at risk. P. aeruginosa and S. aureus are some of the most ubiquitous pathogens in biofilms found in healthcare. P. aeruginosa is a Gram-negative, rod-shaped bacterium, commonly found in the gut flora, soil, and water that can be spread directly or indirectly to patients in healthcare settings. The pathogen can also be spread in other locations through contamination, including surfaces, equipment, and hands. The opportunistic pathogen can cause hospitalized patients to have infections in the lungs, blood, urinary tract, and in other body regions after surgery. S. aureus is a Gram-positive, cocci-shaped bacterium, residing in the environment and on the skin and nose of many healthy individuals. The bacterium can cause skin and bone infections, pneumonia, and other types of potentially serious infections if it enters the body. S. aureus has also gained resistance to many antibiotic treatments, making healing difficult. Because of natural and unnatural selective pressures and factors, antibiotic resistance in bacteria usually emerges through genetic mutation or acquires antibiotic-resistant genes (ARGs) through horizontal gene transfer - a genetic exchange process by which antibiotic resistance can spread.

References

  1. 1 2 3 "Avoparcin". Australian Pesticides and Veterinary Medicine Authority. Archived from the original on 2014-03-10. Retrieved 2012-09-19.
  2. Acar, J.; Casewell, M.; Freeman, J.; Friis, C.; Goossens, H. (2000). "Avoparcin and virginiamycin as animal growth promoters: A plea for science in decision-making". Clinical Microbiology and Infection. 6 (9): 477–82. doi: 10.1046/j.1469-0691.2000.00128.x . PMID   11168181.
  3. Bager, F; Madsen, M; Christensen, J; Aarestrup, F.M (1997). "Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms". Preventive Veterinary Medicine. 31 (1–2): 95–112. doi:10.1016/S0167-5877(96)01119-1. PMID   9234429. S2CID   4958557.
  4. Peter J Collignon (1999). "Vancomycin-resistant enterococci and use of avoparcin in animal feed: is there a link?". Med J Aust. 171 (3): 144–146. doi:10.5694/j.1326-5377.1999.tb123568.x. PMID   10474607. S2CID   24378463.
  5. Lauderdale, TL; Shiau, YR; Wang, HY; Lai, JF; Huang, IW; Chen, PC; Chen, HY; Lai, SS; Liu, YF (2007). "Effect of banning vancomycin analogue avoparcin on vancomycin-resistant enterococci in chicken farms in Taiwan". Environmental Microbiology. 9 (3): 819–23. doi:10.1111/j.1462-2920.2006.01189.x. PMID   17298380.
  6. Commission Directive 97/6/EC of 30 January 1997 amending Council Directive 70/524/EEC concerning additives in feedingstuffs, Official Journal L 035 , 05/02/1997 P. 0011-0013
  7. Alex Koppelman (Nov 7, 2007). "Is the way we raise our food giving us MRSA?". Salon.com.