Bridge scour

Last updated

A diagram showing how scour holes are formed Local scour.gif
A diagram showing how scour holes are formed

Bridge scour is the removal of sediment such as sand and gravel from around bridge abutments or piers. Hydrodynamic scour, caused by fast flowing water, can carve out scour holes, compromising the integrity of a structure. [1]

Contents

In the United States, bridge scour is one of the three main causes of bridge failure (the others being collision and overloading). It has been estimated that 60% of all bridge failures result from scour and other hydraulic-related causes. [2] It is the most common cause of highway bridge failure in the US, [3] where 46 of 86 major bridge failures resulted from scour near piers from 1961 to 1976. [4]

Areas affected by scour

Mississippi Highway 33 bridge over the Homochitto River failed due to flood-induced erosion HomochittoRiver1974.jpg
Mississippi Highway 33 bridge over the Homochitto River failed due to flood-induced erosion

Water normally flows faster around piers and abutments making them susceptible to local scour. At bridge openings, contraction scour can occur when water accelerates as it flows through an opening that is narrower than the channel upstream from the bridge. Degradation scour occurs both upstream and downstream from a bridge over large areas. Over long periods of time, this can result in the lowering of the stream bed. [2]

Causes

Stream channel instability resulting in river erosion and changing angles-of-attack can contribute to bridge scour. Debris can also have a substantial impact on bridge scour in several ways. A build-up of material can reduce the size of the waterway under a bridge causing contraction scour in the channel. A build-up of debris on the abutment can increase the obstruction area and increase local scour. Debris can deflect the water flow, changing the angle of attack and increasing local scour. Debris might also shift the entire channel around the bridge causing increased water flow and scour in another location. [3]

The most frequently encountered bridge scour problems usually involve loose alluvial material that can be easily eroded. It should not be assumed that total scour in cohesive or cemented soils will not be as large as in non-cohesive soils; the scour simply takes longer to develop.

Many of the equations for scour were derived from laboratory studies, for which the range of applicability is difficult to ascertain. Most studies focussed on piers and pile formations, though most bridge scour problems are related to the more complex configuration of the bridge abutment. Some studies were verified using limited field data, though this is also difficult to accurately scale for physical modelling purposes. During field measurements of post scour, a scour hole that had developed on the rising stage of a flood, or at the peak, may be filled in again on the falling stage. For this reason, the maximum depth of scour cannot be simply modelled after the event.

Scour can also cause problems with the hydraulic analysis of a bridge. Scour may considerably deepen the channel through a bridge and effectively reduce or even eliminate the backwater. This reduction in backwater should not be relied on, however, because of the unpredictable nature of the processes involved.

When considering scour it is normal to distinguish between non-cohesive or cohesionless (alluvial) sediments and cohesive material. The former are usually of most interest to laboratory studies. Cohesive materials require special techniques and are poorly researched.

The first major issue when considering scour is the distinction between clear-water scour and live-bed scour. The critical issue is whether or not the mean bed shear stress of the flow upstream of the bridge is less than or larger than the threshold value needed to move the bed material.

If the upstream shear stress is less than the threshold value, the bed material upstream of the bridge is at rest. This is referred to as the clear-water condition because the approach flow is clear and does not contain sediment. Thus, any bed material that is removed from a local scour hole is not replaced by sediment being transported by the approach flow. The maximum local scour depth is achieved when the size of the scour hole results in a local reduction in shear stress to the critical value such that the flow can no longer remove bed material from the scoured area.

Live-bed scour occurs where the upstream shear stress is greater than the threshold value and the bed material upstream of the crossing is moving. This means that the approach flow continuously transports sediment into a local scour hole. By itself, a live bed in a uniform channel will not cause a scour hole—for this to be created some additional increase in shear stress is needed, such as that caused by a contraction (natural or artificial, such as a bridge) or a local obstruction (e.g. a bridge pier). The equilibrium scour depth is achieved when material is transported into the scour hole at the same rate at which it is transported out.

Typically the maximum equilibrium clear-water scour is about 10% larger than the equilibrium live-bed scour. Conditions that favour clear-water scour include bed material being too coarse to be transported, the presence of vegetated or artificial reinforced channels where velocities are only high enough due to local scour, or flat bed slopes during low flows.

It is possible that both clear-water and live-bed scour can occur. During a flood event, bed shear stress may change as the flood flows change. It is possible to have clear-water conditions at the commencement of a flood event, transitioning to a live bed before reverting to clear-water conditions. Note that the maximum scour depth may occur under initial clear-water conditions, not necessarily when the flood levels peak and live-bed scour is underway. Similarly, relatively high velocities can be experienced when the flow is just contained within the banks, rather than spread over the floodplains at the peak discharge.

Urbanization has the effect of increasing flood magnitudes and causing hydrographs to peak earlier, resulting in higher stream velocities and degradation. Channel improvements or the extraction of gravel (above or below the site in question) can alter water levels, flow velocities, bed slopes and sediment transport characteristics and consequently affect scour. For instance, if an alluvial channel is straightened, widened or altered in any other way that results in an increased flow-energy condition, the channel will tend back towards a lower energy state by degrading upstream, widening and aggrading downstream.

The significance of degradation scour to bridge design is that the engineer has to decide whether the existing channel elevation is likely to be constant over the life of the bridge, or whether it will change. If change is probable then it must be allowed for when designing the waterway and foundations.

The lateral stability of a river channel may also affect scour depths, because movement of the channel may result in the bridge being incorrectly positioned or aligned with respect to the approach flow. This problem can be significant under any circumstances but is potentially very serious in arid or semi-arid regions and with ephemeral (intermittent) streams. Lateral migration rates are largely unpredictable. Sometimes a channel that has been stable for many years may suddenly start to move, but significant influences are floods, bank material, vegetation of the banks and floodplains, and land use.

Scour at bridge sites is typically classified as contraction (or constriction) scour and local scour. Contraction scour occurs over a whole cross-section as a result of the increased velocities and bed shear stresses arising from a narrowing of the channel by a construction such as a bridge. In general, the smaller the opening ratio the larger the waterway velocity and the greater the potential for scour. If the flow contracts from a wide floodplain, considerable scour and bank failure can occur. Relatively severe constrictions may require regular maintenance for decades to combat erosion. It is evident that one way to reduce contraction scour is to make the opening wider.

Local scour arises from the increased velocities and associated vortices as water accelerates around the corners of abutments, piers and spur dykes.

Flow pattern around a cylindrical pier

The approaching flow decelerates as it nears the cylinder, coming to rest at the centre of the pier. The resulting stagnation pressure is highest near the water surface where the approach velocity is greatest, and smaller lower down. The downward pressure gradient at the pier face directs the flow downwards. Local pier scour begins when the downflow velocity near the stagnation point is strong enough to overcome the resistance to motion of the bed particles.

During flooding, although the foundations of a bridge might not suffer damage, the fill behind abutments may scour. This type of damage typically occurs with single-span bridges with vertical wall abutments.

Bridge examination and scour evaluation

The examination process is normally conducted by hydrologists and hydrologic technicians, and involves a review of historical engineering information about the bridge, followed by a visual inspection. Information is recorded about the type of rock or sediment carried by the river, and the angle at which the river flows toward and away from the bridge. The area under the bridge is also inspected for holes and other evidence of scour.

Bridge examination begins by office investigation. The history of the bridge and any previous scour related problems should be noted. Once a bridge is recognized as a potential scour bridge, it will proceed to further evaluation including field review, scour vulnerability analysis and prioritizing. Bridges will also be rated in different categories and prioritized for scour risk. Once a bridge is evaluated as scour critical, the bridge owner should prepare a scour plan of action to mitigate the known and potential deficiencies. The plan may include installation of countermeasures, monitoring, inspections after flood events, and procedures for closing bridges if necessary.

Alternatively, sensing technologies are also being put in place for scour assessment. The scour-sensing level can be classified into three levels: general bridge inspection, collecting limited data and collecting detailed data. [5] There are three different types of scour-monitoring systems: fixed, portable and geophysical positioning. Each system can help to detect scour damage in an effort to avoid bridge failure, thus increasing public safety.

Countermeasures and prevention

The Hydraulic Engineering Circular Manual No. 23 (HEC-23) contains general design guidelines as scour countermeasures that are applicable to piers and abutments. The numbering in the following table indicates the HEC-23 design guideline section: [6]

Description of countermeasure types in HEC-23
DescriptionDesign guideline no.
Bend way weirs and stream barbs1
Soil cement 2
Wire-enclosed riprap mattress3
Articulated concrete block system4
Grout-filled mattresses5
Concrete armour units6
Grout- or cement-filled bags7
Rock riprap at piers and abutments8
Spurs9
Guide banks10
Check dams and drop structures11
Revetments12

Bend way weirs, spurs and guide banks can help to align the upstream flow while riprap, gabions, articulated concrete blocks and grout-filled mattresses can mechanically stabilize the pier and abutment slopes. [6] Riprap remains the most common countermeasure used to prevent scour at bridge abutments. A number of physical additions to the abutments of bridges can help prevent scour, such as the installation of gabions and stone pitching upstream from the foundation. The addition of sheet piles or interlocking prefabricated concrete blocks can also offer protection. These countermeasures do not change the scouring flow and are temporary since the components are known to move or be washed away in a flood. [7] The Federal Highway Administration (FHWA) recommends design criteria in HEC-18 and 23, such as avoiding unfavourable flow patterns, streamlining the abutments, and designing pier foundations resistant to scour without depending upon the use of riprap or other countermeasures.

Trapezoidal-shaped channels through a bridge can significantly decrease local scour depths compared to vertical wall abutments, as they provide a smoother transition through a bridge opening. This eliminates abrupt corners that cause turbulent areas. Spur dykes, barbs, groynes, and vanes are river training structures that change stream hydraulics to mitigate undesirable erosion or deposits. They are usually used on unstable stream channels to help redirect stream flow to more desirable locations through the bridge. The insertion of piles or deeper footings is also used to help strengthen bridges.

Estimating scour depth

Hydraulic Engineering Circular Manual No. 18 (HEC-18) was published by the FHWA, and includes several techniques of estimating scour depth. The empirical scour equations for live-bed scour, clear-water scour, and local scour at piers and abutments are shown in the Chapter 5 General Scour section. The total scour depth is determined by adding three scour components which includes the long-term aggradation and degradation of the river bed, general scour at the bridge and local scour at the piers or abutment. [8] However, research has shown that the standard equations in HEC-18 over-predict scour depth for a number of hydraulic and geologic conditions. Most of the HEC-18 relationships are based on laboratory flume studies conducted with sand-sized sediments increased with factors of safety that are not easily recognizable or adjustable. [9] Sand and fine gravel are the most easily eroded bed materials, but streams frequently contain much more scour resistant materials such as compact till, stiff clay, and shale. The consequences of using design methods based on a single soil type are especially significant for many major physiographic provinces with distinctly different geologic conditions and foundation materials. This can lead to overly conservative design values for scour in low risk or non-critical hydrologic conditions. Thus, equation improvements are continued to be made in an effort to minimize the underestimation and overestimation of scour.

Bridge disasters caused by scour

See also

Related Research Articles

<span class="mw-page-title-main">Fluvial sediment processes</span> Sediment processes associated with rivers and streams

In geography and geology, fluvial sediment processes or fluvial sediment transport are associated with rivers and streams and the deposits and landforms created by sediments. It can result in the formation of ripples and dunes, in fractal-shaped patterns of erosion, in complex patterns of natural river systems, and in the development of floodplains and the occurrence of flash floods. Sediment moved by water can be larger than sediment moved by air because water has both a higher density and viscosity. In typical rivers the largest carried sediment is of sand and gravel size, but larger floods can carry cobbles and even boulders. When the stream or rivers are associated with glaciers, ice sheets, or ice caps, the term glaciofluvial or fluvioglacial is used, as in periglacial flows and glacial lake outburst floods. Fluvial sediment processes include the motion of sediment and erosion or deposition on the river bed.

<span class="mw-page-title-main">Stream bed</span> Channel bottom of a stream, river, or creek

A streambed or stream bed is the bottom of a stream or river (bathymetry) and is confined within a channel, or the banks of the waterway. Usually, the bed does not contain terrestrial (land) vegetation and instead supports different types of aquatic vegetation, depending on the type of streambed material and water velocity. Streambeds are what would be left once a stream is no longer in existence. The beds are usually well preserved even if they get buried because the banks and canyons made by the stream are typically hard, although soft sand and debris often fill the bed. Dry, buried streambeds can actually be underground water pockets. During times of rain, sandy streambeds can soak up and retain water, even during dry seasons, keeping the water table close enough to the surface to be obtainable by local people.

<span class="mw-page-title-main">Culvert</span> Structure to channel water past an obstacle

A culvert is a structure that channels water past an obstacle or to a subterranean waterway. Typically embedded so as to be surrounded by soil, a culvert may be made from a pipe, reinforced concrete or other material. In the United Kingdom, the word can also be used for a longer artificially buried watercourse.

<span class="mw-page-title-main">Schoharie Creek</span> River in New York, United States

Schoharie Creek is a river in New York that flows north 93 miles (150 km) from the foot of Indian Head Mountain in the Catskills through the Schoharie Valley to the Mohawk River. It is twice impounded north of Prattsville to create New York City's Schoharie Reservoir and the Blenheim-Gilboa Power Project.

<span class="mw-page-title-main">Riprap</span> Rock or concrete protective armour

Riprap, also known as rip rap, rip-rap, shot rock, rock armour or rubble, is human-placed rock or other material used to protect shoreline structures against scour and water, wave, or ice erosion. Riprap is used to armor shorelines, streambeds, bridge abutments, foundational infrastructure supports and other shoreline structures against erosion. Common rock types used include granite and modular concrete blocks. Rubble from building and paving demolition is sometimes used, as well as specifically designed structures called tetrapods or similar concrete blocks. Riprap is also used underwater to cap immersed tubes sunken on the seabed to be joined into an undersea tunnel.

<span class="mw-page-title-main">Meander</span> One of a series of curves in a channel of a matured stream

A meander is one of a series of regular sinuous curves in the channel of a river or other watercourse. It is produced as a watercourse erodes the sediments of an outer, concave bank and deposits sediments on an inner, convex bank which is typically a point bar. The result of this coupled erosion and sedimentation is the formation of a sinuous course as the channel migrates back and forth across the axis of a floodplain.

<span class="mw-page-title-main">River engineering</span> Study of human intervention in the course, characteristics, or flow of rivers

River engineering is a discipline of civil engineering which studies human intervention in the course, characteristics, or flow of a river with the intention of producing some defined benefit. People have intervened in the natural course and behaviour of rivers since before recorded history—to manage the water resources, to protect against flooding, or to make passage along or across rivers easier. Since the Yuan Dynasty and Ancient Roman times, rivers have been used as a source of hydropower. From the late 20th century, the practice of river engineering has responded to environmental concerns broader than immediate human benefit. Some river engineering projects have focused exclusively on the restoration or protection of natural characteristics and habitats.

<span class="mw-page-title-main">HEC-RAS</span> Software for simulating water flow within rivers

HEC-RAS is simulation software used in computational fluid dynamics – specifically, to model the hydraulics of water flow through natural rivers and other channels.

<span class="mw-page-title-main">Sediment transport</span> Movement of solid particles, typically by gravity and fluid entrainment

Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks, mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting. Sediment transport due to fluid motion occurs in rivers, oceans, lakes, seas, and other bodies of water due to currents and tides. Transport is also caused by glaciers as they flow, and on terrestrial surfaces under the influence of wind. Sediment transport due only to gravity can occur on sloping surfaces in general, including hillslopes, scarps, cliffs, and the continental shelf—continental slope boundary.

<span class="mw-page-title-main">Antidune</span>

An antidune is a bedform found in fluvial and other channeled environments. Antidunes occur in supercritical flow, meaning that the Froude number is greater than 1.0 or the flow velocity exceeds the wave velocity; this is also known as upper flow regime. In antidunes, sediment is deposited on the upstream (stoss) side and eroded from the downstream (lee) side, opposite lower flow regime bedforms. As a result, antidunes migrate in an upstream direction, counter to the current flow. Antidunes are called in-phase bedforms, meaning that the water surface elevation mimics the bed elevation; this is due to the supercritical flow regime. Antidune bedforms evolve rapidly, growing in amplitude as they migrate upstream. The resultant wave at the water's surface also increases in amplitude. When that wave becomes unstable, breaks and washes downstream, much of the antidune bedform may be destroyed.

<span class="mw-page-title-main">Stream load</span>

Stream load is a geologic term referring to the solid matter carried by a stream. Erosion and bed shear stress continually remove mineral material from the bed and banks of the stream channel, adding this material to the regular flow of water. The amount of solid load that a stream can carry, or stream capacity, is measured in metric tons per day, passing a given location. Stream capacity is dependent upon the stream's velocity, the amount of water flow, and the gradation.

MIKE 21C is a computer program that simulates the development in the river bed and channel plan form in two dimensions. MIKE 21C was developed by DHI. MIKE 21C uses curvilinear finite difference grids.

<span class="mw-page-title-main">Schoharie Creek Bridge collapse</span> 1987 bridge collapse in Montgomery County, New York

The Schoharie Creek Bridge was a New York State Thruway (I-90) bridge over the Schoharie Creek near Fort Hunter and the Mohawk River in New York State. On April 5, 1987, it collapsed due to bridge scour at the foundations after a record rainfall. The collapse killed ten people. The replacement bridge was completed and fully open to traffic on May 21, 1988.

<span class="mw-page-title-main">Wing wall</span>

A wing wall is a smaller wall attached or next to a larger wall or structure.

<span class="mw-page-title-main">Check dam</span> Small dam to counteract erosion

A check dam is a small, sometimes temporary, dam constructed across a swale, drainage ditch, or waterway to counteract erosion by reducing water flow velocity. Check dams themselves are not a type of new technology; rather, they are an ancient technique dating from the second century AD. Check dams are typically, though not always, implemented in a system of several dams situated at regular intervals across the area of interest.

<span class="mw-page-title-main">Bar (river morphology)</span> Elevated region of sediment in a river that has been deposited by the flow

A bar in a river is an elevated region of sediment that has been deposited by the flow. Types of bars include mid-channel bars, point bars, and mouth bars. The locations of bars are determined by the geometry of the river and the flow through it. Bars reflect sediment supply conditions, and can show where sediment supply rate is greater than the transport capacity.

<span class="mw-page-title-main">Stream power</span>

Stream power, originally derived by R. A. Bagnold in the 1960s, is the amount of energy the water in a river or stream is exerting on the sides and bottom of the river. Stream power is the result of multiplying the density of the water, the acceleration of the water due to gravity, the volume of water flowing through the river, and the slope of that water. There are many forms of the stream power formula with varying utilities, such as comparing rivers of various widths or quantifying the energy required to move sediment of a certain size. Stream power is closely related to other criteria such as stream competency and shear stress. Stream power is a valuable measurement for hydrologists and geomorphologists tackling sediment transport issues as well as for civil engineers, who use it in the planning and construction of roads, bridges, dams, and culverts.

Three components that are included in the load of a river system are the following: dissolved load, wash load and bed material load. The bed material load is the portion of the sediment that is transported by a stream that contains material derived from the bed. Bed material load typically consists of all of the bed load, and the proportion of the suspended load that is represented in the bed sediments. It generally consists of grains coarser than 0.062 mm with the principal source being the channel bed. Its importance lies in that its composition is that of the bed, and the material in transport can therefore be actively interchanged with the bed. For this reason, bed material load exerts a control on river channel morphology. Bed load and wash load together constitute the total load of sediment in a stream. The order in which the three components of load have been considered – dissolved, wash, bed material – can be thought of as progression: of increasingly slower transport velocities, so that the load peak lags further and further behind the flow peak during any event.

<span class="mw-page-title-main">Subhasish Dey</span>

Subhasish Dey is a hydraulician and educator. He is known for his research on the hydrodynamics and acclaimed for his contributions in developing theories and solution methodologies of various problems on applied hydrodynamics, river mechanics, sediment dynamics, turbulence, fluid boundary layer and open channel flow. He is currently a distinguished professor of Indian Institute of Technology Jodhpur (2023–). Before, he worked as a professor of the department of civil engineering, Indian Institute of Technology Kharagpur (1998–2023), where he served as the head of the department during 2013–15 and held the position of Brahmaputra Chair Professor during 2009–14 and 2015. He also held the adjunct professor position in the Physics and Applied Mathematics Unit at Indian Statistical Institute Kolkata during 2014–19. Besides he has been named a distinguished visiting professor at the Tsinghua University in Beijing, China.

Hydrodynamic scour is the removal of sediment such as silt, sand and gravel from around the base of obstructions to the flow in the sea, rivers and canals. Scour, caused by fast flowing water, can carve out scour holes, compromising the integrity of a structure. It is an interaction between the hydrodynamics and the geotechnical properties of the substrate. It is a notable cause of bridge failure and a problem with most marine structures supported by the seabed in areas of significant tidal and ocean current. It can also affect biological ecosystems and heritage assets.

References

  1. Linda P. Warren, Scour at Bridges: Stream Stability and Scour Assessment at Bridges in Massachusetts Archived 2017-02-12 at the Wayback Machine , U.S. Geological Survey, 2011.
  2. 1 2 Mark N. Landers, Bridge Scour Data Management. Published in Hydraulic Engineering: Saving a Threatened Resource—In Search of Solutions: Proceedings of the Hydraulic Engineering sessions at Water Forum '92. Baltimore, Maryland, August 2–6, 1992. Published by American Society of Civil Engineers.
  3. 1 2 Bridge Scour Evaluation: Screening, Analysis, & Countermeasures, United States Department of Agriculture Forest Service Technology & Development Program
  4. "USGS OGW, BG: Using Surface Geophysics for Bridge Scour Detection". Water.usgs.gov. Retrieved 2010-07-30.
  5. Ettouney, Mohammed M.; Alampalli, Sreenivas (2011). Infrastructure Health in Civil Engineering : Applications and Management. CRC Press. Retrieved April 04, 2012, from Ebook Library.
  6. 1 2 Lagasse, P. F., Zevenbergen, L. W., Schall, J. D., & Clopper, P. E. US Department of Transportation, Federal Highway Administration. (2001). Bridge scour and stream instability countermeasures (NHI 01-003). Retrieved from website: http://isddc.dot.gov/OLPFiles/FHWA/010592.pdf Archived 2011-10-17 at the Wayback Machine
  7. "Publications - Hydraulics Engineering - FHWA". Fhwa.dot.gov. 2006-04-26. Retrieved 2010-07-30.
  8. Richardson, E. V., & Davis, S. R. U.S. Department of Transportation, Federal Highway Administration. (2001). Hydraulics engineering publications title: Evaluating scour at bridges, fourth edition description (NHI-01-001). Retrieved from website: https://www.fhwa.dot.gov/engineering/hydraulics/library_arc.cfm?pub_number=17&id=37)
  9. Chase, K. J., Holnbeck, S. R., Montana., & Geological Survey (U.S.). (2004). Evaluation of pier-scour equations for coarse-bed streams. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey.

Further reading