Carpinus perryae

Last updated

Carpinus perryae
Temporal range: Ypresian
Carpinus parryae fruit SRIC SR 11-06-09 A img1.tif
Carpinus parryaefruit
Scientific classification Red Pencil Icon.png
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Fagales
Family: Betulaceae
Genus: Carpinus
Species:
C. perryae
Binomial name
Carpinus perryae
Pigg, Manchester, & Wehr

Carpinus perryae is an extinct species of hornbeam known from fossil fruits found in the Klondike Mountain Formation deposits of northern Washington state, dated to the early Eocene Ypresian stage. Based on described features, C. perryae is the oldest definite species in the genus Carpinus.

Contents

History and classification

Carpinus perryae was described from two type specimens, the holotype and paratype fertile bracts, numbered UWBM 71171, specimen A and B respectively. Both compression fossil specimens are preserved together on a single rock slab that is part of the Burke Museum paleobotanical collections. [1] Found at the Klondike Mountain Formations UWBM site B2737, which is designated the type locality, the fossils were described by paleobotanists Pigg, Manchester, and Wehr (2003) along with Corylus johnsonii and Palaeocarpinus barksdaleae . The specific epithet perryae was coined as a matronym recognizing Madilane Perry for her work founding the Stonerose Interpretive Center in Republic, Washington. [1]

Pigg, Manchester, and Wehr (2003) noted at the time of description that Carpinus perryae was the oldest confirmed hornbeam fossil placed in Carpinus , [1] a status affirmed by Forest et al (2005) who used C perryae as a fossil calibration point for phylogenetic analysis of Betulaceae. [2]

Based on six morphological character states that are present in the fossils ranging from nutlet and bract shape to serration of the bract, C. perryae was determined to be most similar to species in Carpinus subgenus Carpinus, such as Carpinus monbeigiana . A noted distinction between the modern species and the fossils is the overall bract shape, ovate in modern species, but obovate in C. perryae. [1]

Distribution and paleoecology

Carpinus perryae is known from a single location in the Eocene Okanagan Highlands, an outcrop of the Ypresian [3] Klondike Mountain Formation in Republic. [1] The formation preserves an upland lake system surrounded by a mixed conifer–broadleaf forest with nearby volcanism. [4] The pollen flora has notable elements of birch and golden larch, and distinct trace amounts of fir, spruce, cypress, and palm. [3] Wolfe and Tanai (1987) interpreted the forest climate to have been microthermal, [5] [6] having distinct seasonal temperature swings which dipped below freezing in the winters. However, further study has shown the lake system was surrounded by a warm temperate ecosystem that likely had a mesic upper microthermal to lower mesothermal climate, in which winter temperatures rarely dropped low enough for snow, and which were seasonably equitable. [3] [7] The Okanagan Highlands paleoforest surrounding the lakes have been described as precursors to the modern temperate broadleaf and mixed forests of Eastern North America and Eastern Asia. Based on the fossil biotas, the lakes were higher and cooler then the coeval coastal forests preserved in the Puget Group and Chuckanut Formation of Western Washington, which are described as lowland tropical forest ecosystems. Estimates of the paleoelevation range between 700–1,200 m (2,300–3,900 ft) higher than the coastal forests. This is consistent with the paleoelevation estimates for the lake systems, which range between 1,100–2,900 m (3,600–9,500 ft), which is similar to the modern elevation of 800 m (2,600 ft), but higher. [7]

Estimates of the mean annual temperature for the Klondike Mountain Formation have been derived from climate leaf analysis multivariate program (CLAMP) analysis and leaf margin analysis (LMA) of the Republic paleoflora. The CLAMP results, after multiple linear regressions for Republic, gave a mean annual temperature of approximately 8.0 °C (46.4 °F), while the LMA gave 9.2 ± 2.0 °C (48.6 ± 3.6 °F). This is lower than the mean annual temperature estimates given for the coastal Puget Group, which is estimated to have been between 15 and 18.6 °C (59.0 and 65.5 °F). The bioclimatic analysis for Republic suggests mean annual precipitation amounts of 115 ± 39 cm (45 ± 15 in). [7]

C. perryae is one of several birch-alder family species described from the Republic site. Two other members of subfamily Coryloideae have also been described from the Klondike Mountain Formation, Corylus johnsonii and Palaeocarpinus barksdaleae, [1] while an additional two species Alnus parvifolia and Betula leopoldae are known from subfamily Betuloideae. [6]

Description

The Carpinus perryae fruits have a basal nutlet 5.5–6 mm (0.22–0.24 in) by 3.3–4.0 mm (0.13–0.16 in) wide which is enclosed by an asymmetrical wing-shaped bract. The elongated bract is 22–25 mm (0.87–0.98 in) long and only 6–8 mm (0.24–0.31 in) wide, giving an obovate outline, and arises from the upper margin on the nutlet. Along the margins of the bract are small widely spaced teeth which are obtuse to nearly spiny in morphology. Five to six veins originate at the attachment region of the nutlet and extend upwards through the bract. One to two primary veins are present on the narrower side of the bract and the other three to four on the wider side with the widest primary vein slightly offset from the bract center and running to the bract apex. Secondary veins branch from the either side of the primaries in alternating fashion, and tertiary veins connect the secondaries at right angles. The primary veins terminate in the teeth, with the other teeth vascularized by secondary veins. [1]

Related Research Articles

<span class="mw-page-title-main">Hornbeam</span> Genus of flowering plants

Hornbeams are hardwood trees in the flowering plant genus Carpinus in the birch family Betulaceae. The 30–40 species occur across much of the temperate regions of the Northern Hemisphere.

<i>Corylus johnsonii</i> Extinct species of flowering plant

Corylus johnsonii is an extinct species of hazel known from fossil fruits found in the Klondike Mountain Formation deposits of northern Washington state, dated to the early Eocene Ypresian stage. Based on described features, C. johnsonii is the oldest definite species in the genus Corylus.

Neviusia dunthornei is an extinct species of flowering plants in the family Rosaceae. The species is solely known from the early Eocene, Ypresian stage, Allenby Formation Lacustrine deposits near the town of Princeton, British Columbia.

<span class="mw-page-title-main">Klondike Mountain Formation</span>

The Klondike Mountain Formation is an Early Eocene (Ypresian) geological formation located in the northeast central area of Washington state. The formation, named for the type location designated in 1962, Klondike Mountain north of Republic, Washington, is composed of volcanic rocks in the upper unit and volcanics plus lacustrine (lakebed) sedimentation in which a lagerstätte with exceptionally well-preserved plant and insect fossils has been found, along with fossil epithermal hot springs.

Acer stonebergae is an extinct maple species in the family Sapindaceae described from two fossil samaras. The species is solely known from the Early Eocene sediments exposed in northeast Washington state, United States, and the adjacent area of south central British Columbia, Canada. It is one of three species belonging to the extinct section Torada.

<i>Fothergilla malloryi</i> Extinct species of flowering plant

Fothergilla malloryi is an extinct species of flowering plant in the family Hamamelidaceae known from fossil leaves found in the early Eocene Klondike Mountain Formation deposits of northern Washington state. The F. malloryi leaves are the earliest appearance in the fossil record of a member of the witchalder genus Fothergilla, which includes the living species F. gardenii, and F. major, both of which are native to the southeastern United States. The genus also includes three or four other fossil species with two Asian Miocene species, F. viburnifolia from China, F. ryozenensis from Japan along with one Miocene North American species, F. praeolata of Oregon. Fothergilla durhamensis described from Eocene sediments in King County, Washington is considered dubious in placement, and it was transferred to the genus Platimeliphyllum by Huegele et al. (2021).

<i>Corylopsis reedae</i> Extinct species of flowering plant

Corylopsis reedae is an extinct species of flowering plant in the family Hamamelidaceae known from fossil leaves found in the early Eocene Klondike Mountain Formation deposits of northern Washington state. C. readae is one of the oldest occurrences of the winter-hazel genus Corylopsis, which includes between seven and thirty species, all found in Asia. Fossils from two other occurrences are of similar age to C. readae, with Paleocene specimens from Greenland being placed in the form taxon Corylopsiphyllum and an Eocene Alaskan fossil being included in Corylopsis without species placement.

<i>Rhus malloryi</i> Extinct species of flowering plant

Rhus malloryi is an extinct species of flowering plant in the sumac family Anacardiaceae. The species is known from fossil leaves found in the early Eocene deposits of northern Washington state, United States. The species was first described from a series of isolated fossil leaves in shale. R. malloryi is one of four sumac species to be described from the Klondike Mountain Formation, and forms a hybrid complex with the other three species.

<i>Betula leopoldae</i> Extinct species of flowering plant

Betula leopoldae is an extinct species of birch in the family Betulaceae. The species is known from fossil leaves, catkins, and inflorescences found in the early Eocene deposits of northern Washington state, United States, and similar aged formations in British Columbia, Canada. The species is placed as basal in Betula, either as a stem group species, or an early divergent species.

<i>Rhus garwellii</i> Extinct species of flowering plant

Rhus garwellii is an extinct species of flowering plant in the sumac family Anacardiaceae. The species is known from fossil leaves found in the early Eocene deposits of northern Washington State, United States. The species was first described from fossil leaves found in the Klondike Mountain Formation. R. garwellii likely hybridized with the other Klondike Mountain formation sumac species R. boothillensis, R. malloryi, and R. republicensis.

<i>Tetracentron hopkinsii</i> Extinct species of flowering plant

Tetracentron hopkinsii is an extinct species of flowering plant in the family Trochodendraceae. The species is known from fossil leaves found in the early Eocene deposits of northern Washington state, United States and south Central British Columbia. The species was first described from fossil leaves found in the Allenby Formation. T. hopkinsii are possibly the leaves belonging to the extinct trochodendraceous fruits Pentacentron sternhartae.

<i>Comptonia columbiana</i> Extinct species of sweet fern

Comptonia columbiana is an extinct species of sweet fern in the flowering plant family Myricaceae. The species is known from fossil leaves found in the early Eocene deposits of central to southern British Columbia, Canada, plus northern Washington state, United States, and, tentatively, the late Eocene of Southern Idaho and Earliest Oligocene of Oregon, United States.

<i>Barghoornia</i> Extinct species of flowering plants

Barghoornia is an extinct genus of flowering plants in the family Burseraceae containing the solitary species Barghoornia oblongifolia. The species is known from fossil leaves found in the early Eocene deposits of northern Washington state, United States.

Acer spitzi is an extinct maple species in the family Sapindaceae described from a single fossil samara. The species is solely known from the Early Eocene sediments exposed in northeast Washington state, United States. It is the only species belonging to the extinct section Spitza.

Klondikia is an extinct hymenopteran genus in the ant family Formicidae with a single described species Klondikia whiteae. The species is solely known from the Early Eocene sediments exposed in northeast Washington state, United States. The genus is currently not placed into any ant subfamily, being treated as incertae sedis.

The paleoflora of the Eocene Okanagan Highlands includes all plant and fungi fossils preserved in the Eocene Okanagan Highlands Lagerstätten. The highlands are a series of Early Eocene geological formations which span an 1,000 km (620 mi) transect of British Columbia, Canada and Washington state, United States and are known for the diverse and detailed plant fossils which represent an upland temperate ecosystem immediately after the Paleocene-Eocene thermal maximum, and before the increased cooling of the middle and late Eocene to Oligocene. The fossiliferous deposits of the region were noted as early as 1873, with small amounts of systematic work happening in the 1880-90s on British Columbian sites, and 1920-30s for Washington sites. A returned focus and more detailed descriptive work on the Okanagan Highlands sites revived in the 1970's. The noted richness of agricultural plant families in Republic and Princeton floras resulted in the term "Eocene orchards" being used for the paleofloras.

<i>Pteronepelys</i> Fossil genus of plants

Pteronepelys, sometimes known as the winged stranger, is an extinct genus of flowering plant of uncertain affinities, which contains the one species, Pteronepelys wehrii. It is known from isolated fossil seeds found in middle Eocene sediments exposed in north central Oregon and Ypresian-age fossils found in Washington, US.

<i>Fagus langevinii</i> Fossil species of beech tree

Fagus langevinii is an extinct species of beech in the family Fagaceae. The species is known from fossil fruits, nuts, pollen, and leaves found in the early Eocene deposits of South central British Columbia, and northern Washington state, United States.

<span class="mw-page-title-main">Eocene Okanagan Highlands</span>

The Eocene Okanagan Highlands or Eocene Okanogan Highlands are a series of Early Eocene geological formations which span a 1,000 km (620 mi) transect of British Columbia, Canada, and Washington state, United States. Known for a highly diverse and detailed plant and animal paleobiota the paleolake beds as a whole are considered one of the great Canadian Lagerstätten. The paleobiota represented are of an upland subtropical to temperate ecosystem series immediately after the Paleocene–Eocene thermal maximum, and before the increased cooling of the middle and late Eocene to Oligocene. The fossiliferous deposits of the region were noted as early as 1873, with small amounts of systematic work happening in the 1870–1920s on British Columbian sites, and 1920–1930s for Washington sites. Focus and more detailed descriptive work on the Okanagan Highland sites started in the late 1960s.

<i>Alnus parvifolia</i> Extinct species of flowering plant

Alnus parvifolia is an extinct species of flowering plant in the family Betulaceae related to the modern birches. The species is known from fossil leaves and possible fruits found in early Eocene sites of northern Washington state, United States, and central British Columbia, Canada.

References

  1. 1 2 3 4 5 6 7 Pigg, K. B.; Manchester, S. R.; Wehr, W. C. (2003). "Corylus, Carpinus, and Palaeocarpinus (Betulaceae) from the Middle Eocene Klondike Mountain and Allenby Formations of Northwestern North America". International Journal of Plant Sciences. 164 (5): 807–822. doi:10.1086/376816. S2CID   19802370.
  2. Forest, F.; Savolainen, V.; Chase, M. W.; Lupia, R.; Bruneau, A.; Crane, P. R. (2005). "Teasing apart molecular-versus fossil-based error estimates when dating phylogenetic trees: a case study in the birch family (Betulaceae)". Systematic Botany. 30 (1): 118–133.
  3. 1 2 3 Moss, P. T.; Greenwood, D. R.; Archibald, S. B. (2005). "Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia – Washington State) from palynology". Canadian Journal of Earth Sciences. 42 (2): 187–204. Bibcode:2005CaJES..42..187M. doi:10.1139/E04-095.
  4. Archibald, S.; Greenwood, D.; Smith, R.; Mathewes, R.; Basinger, J. (2011). "Great Canadian Lagerstätten 1. Early Eocene Lagerstätten of the Okanagan Highlands (British Columbia and Washington State)". Geoscience Canada. 38 (4): 155–164.
  5. Wolfe, J.A.; Tanai, T. (1987). "Systematics, Phylogeny, and Distribution of Acer (maples) in the Cenozoic of Western North America". Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy. 22 (1): 1–246.
  6. 1 2 Wolfe, J. A.; Wehr, W. C. (1987). Middle Eocene dicotyledonous plants from Republic, northeastern Washington (PDF) (Report). Bulletin. Vol. 1597. United States Geological Survey. pp. 1–25. doi: 10.3133/b1597 .
  7. 1 2 3 Greenwood, D. R.; Archibald, S. B.; Mathewes, R. W; Moss, P. T. (2005). "Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape". Canadian Journal of Earth Sciences. 42 (2): 167–185. Bibcode:2005CaJES..42..167G. doi:10.1139/e04-100.