In organic and physical organic chemistry, Clar's rule is an empirical rule that relates the chemical stability of a molecule with its aromaticity. It was introduced in 1972 by the Austrian organic chemist Erich Clar in his book The Aromatic Sextet. The rule states that given a polycyclic aromatic hydrocarbon, the resonance structure most important to characterize its properties is that with the largest number of aromatic π-sextets i.e. benzene-like moieties. [1]
In general, the chemical structure of a given polycyclic aromatic hydrocarbon admits more than one resonance structure: these are sometimes referred to as Kekulé resonance structures. Some of such structures may contain aromatic π-sextets, namely groups of six π-electrons localized in a benzene-like moiety and separated by adjacent rings by formal C–C bonds. An aromatic π-sextet can be represented by a circle, as in the case of the anthracene molecule. Clar's rule states that for a benzenoid polycyclic aromatic hydrocarbon (i.e. with only hexagonal rings), the resonance structure with the largest number of disjoint aromatic π-sextets is the most important to characterize its chemical and physical properties. Such resonance structure is called the Clar structure. In other words, a polycyclic aromatic hydrocarbon with a given number of π-sextets is more stable than its isomers with less π-sextets. [1] [2] In 1984, Glidewell and Lloyd provided an extension of Clar's rule to polycyclic aromatic hydrocarbons containing rings of any size. [3] More recently, Clar's rule was further extended to biradicaloids in their singlet state. [4]
When writing a Clar structure, the following rules must be satisfied: [5]
Some observations about these rules are worth to be put into evidence. Following Clar, [1] rules at points 1 and 2 imply that circles can never be in adjacent rings; rule at point 3 means that only four options are viable for rings, namely (i) having only one double bond, (ii) having two double bonds, (iii) having a circle, or (iv) being empty, i.e. having no double bonds; finally, the arrow mentioned in the rule at point 4 can be interpreted in terms of mobility of π-sextets (in this case we speak of migrating π-sextets) or, equivalently, of a quantum-mechanical resonance between different Clar structures. [5]
In the following, Clar's rule is applied to three different cases.
According to the rules exposed above, the phenanthrene molecule admits two different resonance structures: one of them presents a single circle in the center of the molecule, with each of the two adjacent rings having two double bonds; the other one has the two peripheral rings each with one circle, and the central ring with one double bond. According to Clar's rule, this last resonance structure gives the most important contribution to the determination of the properties of phenanthrene. [2] [6]
The anthracene molecule admits three resonance structures, each with a circle in one ring and two sets of double bonds in the other two. Following the rule at point 4 exposed above, anthracene is better described by a superposition of these three equivalent structures, and an arrow is drawn to indicate the presence of a migrating π-sextet. Following the same line of reasoning, one can find migrating π-sextets in other molecules of the acene series, such as tetracene, pentacene, and hexacene. [2]
Fusing angular rings around a benzene moiety leads to an increase in stability. The Clar structure of anthracene, for instance, has only one π-sextet, but moving one ring into the angular position phenanthrene is obtained, the Clar structure of which carries two circles instead of one – notice that this molecule can be thought of as a benzene moiety with two fused rings; a third ring can be fused to obtain triphenylene, with three aromatic π-sextets in its Clar structure. The chemical stability of these molecules is greatly influenced by the degree of aromaticity of their Clar structures. As a result, while anthracene reacts with maleic acid, phenanthrene does not, and triphenylene is the most stable species of these three. [1]
Since its formal statement in 1972, Clar's rule has received a vast amount of experimental evidence. The dependence of the color and reactivity of some small polycyclic aromatic hydrocarbons on the number of π-sextets in their structures is reported by Clar himself in his seminal contribution. [1] Similarly, it was shown that the HOMO-LUMO gap, and therefore the color, of a series of heptacatafusenes depends on the number of π-sextets. [5] Clar's rule has also been supported by experimental results about the distribution of π-electrons in polycyclic aromatic hydrocarbons, [7] valence bond calculations, [8] and nucleus independent chemical shift studies. [9]
Clar's rule is widely applied in the fields of chemistry and materials science. For instance, Clar's rule can be used to predict several properties of graphene nanoribbons. [10] Aromatic π-sextets play an important part in the determination of the ground state of open shell biradical-type structures., [4] Clar's rule can rationalize the observed a decrease of the bandgap of holey graphenes with increasing size. [11]
Despite the experimental support mentioned above, Clar's rule suffers from some limitations. In the first place, Clar's rule is formulated only for species with hexagonal rings, [12] and thus it cannot be applied to species having rings different from the benzene moiety, even though an extension of the rule to molecules with rings of any dimension has been provided by Glidewell and Lloyd. [12] Secondly, if more than one Clar structure exist for a given species, Clar's rule does not allow to determine the relative importance of each of them in the determination of the physicochemical properties. [6] Finally, it is important to mention that exceptions to the Clar's rule exist, such as in the case of triangulenes. [13]
Aromatic compounds or arenes usually refers to organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule. Aromatic compounds have the following general properties:
Naphthalene is an organic compound with formula C
10H
8. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass. As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings. It is the main ingredient of traditional mothballs.
In theoretical chemistry, a conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability. It is conventionally represented as having alternating single and multiple bonds. Lone pairs, radicals or carbenium ions may be part of the system, which may be cyclic, acyclic, linear or mixed. The term "conjugated" was coined in 1899 by the German chemist Johannes Thiele.
In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone. The earliest use of the term was in an article by August Wilhelm Hofmann in 1855. There is no general relationship between aromaticity as a chemical property and the olfactory properties of such compounds.
In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures into a resonance hybrid in valence bond theory. It has particular value for analyzing delocalized electrons where the bonding cannot be expressed by one single Lewis structure. The resonance hybrid is the accurate structure for a molecule or ion; it is an average of the theoretical contributing structures.
Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes. Anthracene is colorless but exhibits a blue (400–500 nm peak) fluorescence under ultraviolet radiation.
Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) with formula C14H10, consisting of three fused benzene rings. It is a colorless, crystal-like solid, but can also appear yellow. Phenanthrene is used to make dyes, plastics, pesticides, explosives, and drugs. It has also been used to make bile acids, cholesterol and steroids.
Coronene is a polycyclic aromatic hydrocarbon (PAH) comprising seven peri-fused benzene rings. Its chemical formula is C
24H
12. It is a yellow material that dissolves in common solvents including benzene, toluene, and dichloromethane. Its solutions emit blue light fluorescence under UV light. It has been used as a solvent probe, similar to pyrene.
A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the incomplete combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.
In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4n + 2 π electrons, where n is a non-negative integer. The quantum mechanical basis for its formulation was first worked out by physical chemist Erich Hückel in 1931. The succinct expression as the 4n + 2 rule has been attributed to W. v. E. Doering (1951), although several authors were using this form at around the same time.
Antiaromaticity is a chemical property of a cyclic molecule with a π electron system that has higher energy, i.e., it is less stable due to the presence of 4n delocalised electrons in it, as opposed to aromaticity. Unlike aromatic compounds, which follow Hückel's rule and are highly stable, antiaromatic compounds are highly unstable and highly reactive. To avoid the instability of antiaromaticity, molecules may change shape, becoming non-planar and therefore breaking some of the π interactions. In contrast to the diamagnetic ring current present in aromatic compounds, antiaromatic compounds have a paramagnetic ring current, which can be observed by NMR spectroscopy.
Simple aromatic rings, also known as simple arenes or simple aromatics, are aromatic organic compounds that consist only of a conjugated planar ring system. Many simple aromatic rings have trivial names. They are usually found as substructures of more complex molecules. Typical simple aromatic compounds are benzene, indole, and pyridine.
Triphenylene is an organic compound with the formula (C6H4)3. A flat polycyclic aromatic hydrocarbon (PAH), it consists of four fused benzene rings. Triphenylene has delocalized 18-π-electron systems based on a planar structure, corresponding to the symmetry group D3h. It is a white or colorless solid.
Cyclodecapentaene or [10]annulene is an annulene with molecular formula C10H10. This organic compound is a conjugated 10 pi electron cyclic system and according to Huckel's rule it should display aromaticity. It is not aromatic, however, because various types of ring strain destabilize an all-planar geometry.
A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.
An aromatic ring current is an effect observed in aromatic molecules such as benzene and naphthalene. If a magnetic field is directed perpendicular to the plane of the aromatic system, a ring current is induced in the delocalized π electrons of the aromatic ring. This is a direct consequence of Ampère's law; since the electrons involved are free to circulate, rather than being localized in bonds as they would be in most non-aromatic molecules, they respond much more strongly to the magnetic field.
Benzo[c]phenanthrene is a polycyclic aromatic hydrocarbon with the chemical formula C18H12. It is a white solid that is soluble in nonpolar organic solvents. It is a nonplanar molecule consisting of the fusion of four fused benzene rings. The compound is of mainly theoretical interest but it is environmentally occurring and weakly carcinogenic.
Kekulene is a polycyclic aromatic hydrocarbon which consists of 12 fused benzene rings arranged in a circle. It is therefore classified as a [12]-circulene with the chemical formula C48H24. It was first synthesized in 1978, and was named in honor of August Kekulé, the discoverer of the structure of the benzene molecule.
In chemistry, a C–H···O interaction is occasionally described as a special type of weak hydrogen bond. These interactions frequently occur in the structures of important biomolecules like amino acids, proteins, sugars, DNA and RNA.
Boraacenes are polycyclic aromatic hydrocarbons containing at least one boron atom. Structurally, they are related to acenes, linearly fused benzene rings. However, the boron atom is electron deficient and may act as a Lewis Acid when compared to carbon. This results in slightly less negative charge within the ring, smaller HOMO-LUMO gaps, as well as differences in redox chemistry when compared to their acene analogues. When incorporated into acenes, Boron maintains the planarity and aromaticity of carbon acenes, while adding an empty p-orbital, which can be utilized for the fine tuning of organic semiconductor band gaps. Due to this empty p orbital, however, it is also highly reactive when exposed to nucleophiles like water or normal atmosphere, as it will readily be attacked by oxygen, which must be addressed to maintain its stability.