Colletotrichum fioriniae

Last updated

Contents

Colletotrichum fioriniae
Culture of Colletotrichum fioriniae.jpg
Scientific classification
Kingdom:
Division:
Class:
Order:
Family:
Genus:
Species complex:
Species:
C. fioriniae
Binomial name
Colletotrichum fioriniae
Marcelino & Gouli (2008)

Colletotrichum fioriniae is a fungal plant pathogen and endophyte of fruits and foliage of many broadleaved plants worldwide. [1] [2] It causes diseases on agriculturally important crops, including anthracnose of strawberry, ripe rot of grapes, bitter rot of apple, anthracnose of peach, and anthracnose of blueberry. [3] Its ecological role in the natural environment is less well understood, other than it is a common leaf endophyte of many temperate trees and shrubs [2] and in some cases may function as an entomopathogen. [4]

Taxonomic history

C. fioriniae was formally described as a variety of Colletotrichum acutatum in 2008, [4] and as its own species shortly thereafter. [5] However, while it had not previously been recognized as a separate species, when grown on potato dextrose agar it produces a distinct pink to maroon red color on the bottom side and was described in historical studies as "chromogenic" isolates of Glomerella cingulata . [6] [7] [8] It is currently recognized as a species within the C. acutatum species complex. [1]

Identification

C. fioriniae produces conidia that are smooth-walled, hyaline (glassy and translucent), with acute (pointed) ends, measuring about 15 x 4.5 microns. [1] When grown on potato dextrose agar it usually produces a pink to dark red chromogenic color on the reverse side. However, these morphological characteristic overlap with those of other species in the C. acutatum species complex, so definitive identification requires the sequencing of DNA barcoding regions such as the internally transcribed spacer (ITS), or introns in the GAPDH, histone3, beta-tubulin, or actin genes. [9]

Reproduction

Like other species in the C. acutatum species complex, C. fioriniae reproduces almost exclusively via the production of asexual spores called conidia. [10] [1] These conidia are often produced in sticky gelatinous orange masses that are rain-splash dispersed. [10] [11] Conidia are mostly produced at temperatures from 10 to 30 °C, such that in temperate deciduous forests and orchards rain-splash dispersal occurs from bud-break to leaf drop. [12]

Pathogenic lifestyle

As a plant pathogen, C. fioriniae has a hemibiotrophic lifestyle, where infections are initially biotrophic (or latent or quiescent, depending on the point of view) before switching to necrotrophy and active killing of the plant cells. [10]

Related Research Articles

<span class="mw-page-title-main">Canker</span> Common name for a tree disease

A plant canker is a small area of dead tissue, which grows slowly, often over years. Some cankers are of only minor consequence, but others are ultimately lethal and therefore can have major economic implications for agriculture and horticulture. Their causes include a wide range of organisms as fungi, bacteria, mycoplasmas and viruses. The majority of canker-causing organisms are bound to a unique host species or genus, but a few will attack other plants. Weather and animal damage can also cause stress to the plant resulting in cankers. Other causes of cankers is pruning when the bark is wet or using un-sterilized tools.

<span class="mw-page-title-main">Sooty mold</span> Name for several species of fungus

Sooty mold is a collective term for different Ascomycete fungi, which includes many genera, commonly Cladosporium and Alternaria. It grows on plants and their fruit, but also environmental objects, like fences, garden furniture, stones, and even cars. The mold benefits from either a sugary exudate produced by the plant or fruit, or honeydew-secreting insects or sap suckers the plant may be infested by.

Glomerella graminicola is an economically important crop parasite affecting both wheat and maize where it causes the plant disease Anthracnose Leaf Blight.

<i>Colletotrichum acutatum</i> Species of fungus

Colletotrichum acutatum is a plant pathogen and endophyte. It is the organism that causes the most destructive fungal disease, anthracnose, of lupin species worldwide. It also causes the disease postbloom fruit drop on many varieties of citrus, especially Valencia and navel oranges in Florida.

Cadophora malorum is a saprophytic plant pathogen that causes side rot in apple and pear and can also cause disease on asparagus and kiwifruit. C. malorum has been found parasitizing shrimp and other fungal species in the extreme environments of the Mid-Atlantic Ridge, and can be categorized as a halophilic psychrotrophic fungus and a marine fungus.

<i>Didymella rabiei</i> Species of fungus

Didymella rabiei, commonly called chickpea ascochyta blight fungus, is a fungal plant pathogen of chickpea. Didymella rabiei is the teleomorph of Ascochyta rabiei, which is the anamorph, but both names are the same species.

Fusarium redolens is a species of fungus in the genus Fusarium and family Nectriaceae. This species is a soil-borne plant pathogen in temperate prairies. It causes diseases such as root, crown, and spear rot, seedling damping-off, and wilting disease. It is a known producer of the alkaloids peimisine and imperialine-3β-d-glucoside, which has implications for traditional Chinese medicine.

<i>Glomerella cingulata</i> Species of fungus

Glomerella cingulata is a fungal plant pathogen, being the name of the sexual stage (teleomorph) while the more commonly referred to asexual stage (anamorph) is called Colletotrichum gloeosporioides. For most of this article the pathogen will be referred to as C. gloeosporioides. This pathogen is a significant problem worldwide, causing anthracnose and fruit rotting diseases on hundreds of economically important hosts.

Monilinia fructigena is a plant pathogen in the fungus kingdom causing a fruit rot of apples, pears, plums, peaches and cherries.

Colletotrichum fragariae is a fungal plant pathogen infecting strawberries. It is not a well known fungus, and there are many similar fungi that are related to it. It is part of the Colletotrichum genus. It is a pathogen that occurs in strawberries. It leads to the disease known as anthracnose. This is typically at the crown of the strawberry, which is why it is often called crown rot. It is also known as the Anthracnose Crown rot. The fungus also infects leaves and is known as leaf spot, which is common among all Colletotrichum. This is not as common in the fragariae, as it is more common in the crown. This fungus is also better at infecting younger strawberries/seedlings. The most common way to control this disease is fungicides that are harmful to the environment. There have been studies done to see if the fungus infects other hosts but other than some weeds, it is very specific to Strawberries.

Wheat yellow mosaic virus is a plant pathogenic virus of the family Potyviridae.

Pecan anthracnose is a fungal disease of pecan trees caused by the ascomycete Glomerella cingulata (Stoneman) Spauld. & H. It is a widespread disease found wherever pecan trees are grown. Pecan anthracnose has been reported as far back in time as 1914, and as far away as Argentina. Glomerella cingulata has two anamorphs which cause disease on pecan trees, Colletotrichum gloeosporioides and Colletotrichum acutatum. The occurrence of Colletotrichum on pecans has contributed to a significant decline in pecan production in various years. An increase in the incidence of pecan anthracnose is highly correlated with heavy rainfall, especially heavy rainfall occurring in early spring. The severity of symptoms increases as the season progresses, often culminating in leaf drop in the late autumn. This defoliation is linked to lower yield and poorer quality of nuts.

<i>Fusarium mangiferae</i> Species of fungus

Fusarium mangiferae is a fungal plant pathogen that infects mango trees. Its aerial mycelium is white and floccose. Conidiophores on aerial mycelium originating erect and prostrate from substrate; they are sympodially branched bearing mono and polyphialides. Polyphialides have 2–5 conidiogenous openings. Phialides on the aerial conidiophores mono- and polyphialidic. Sterile hyphae are absent. Microconidia are variable in shape, obovoid conidia are the most abundant type, oval to allantoid conidia occurring occasionally. Microconidia mostly 0-septate with 1-septate conidia occurring less abundantly. Sporodochia are present. Macroconidia are long and slender, usually 3–5 septate. Chlamydospores are absent.

<i>Verticillium nonalfalfae</i> Species of fungus

Verticillium nonalfalfae is a soilborne fungus in the order Hypocreales. It causes verticillium wilt in some plant species, particularly Ailanthus altissima. The fungus produces a resting mycelium characterized by brown-pigmented hyphae. It is most closely related to V. dahliae and V. alfalfae.

<span class="mw-page-title-main">Bitter rot of apple</span> Plant disease

Bitter rot of apple is a fungal disease of apple fruit that is caused by several species in the Colletotrichum acutatum and Colletotrichum gloeosporioides species complexes. It is identified by sunken circular lesions with conical intrusions into the apple flesh that appear V-shaped when the apple is cut in half through the center of the lesion. It is one of the most devastating diseases of apple fruit in regions with warm wet weather.

References

  1. 1 2 3 4 Damm, U.; Cannon, P.F.; Woudenberg, J.H.C.; Crous, P.W. (2012). "The Colletotrichum acutatum species complex". Studies in Mycology. 73 (1): 37–113. doi:10.3114/sim0010. PMC   3458416 . PMID   23136458.
  2. 1 2 Martin, Phillip L.; Peter, Kari A. (2021). "Quantification of Colletotrichum fioriniae in Orchards and Deciduous Forests Indicates It Is Primarily a Leaf Endophyte". Phytopathology. 111 (2): 333–344. doi: 10.1094/PHYTO-05-20-0157-R . ISSN   0031-949X. PMID   32729787. S2CID   220875296.
  3. Dowling, Madeline; Peres, Natalia; Villani, Sara; Schnabel, Guido (2020). "Managing Colletotrichum on Fruit Crops: A "Complex" Challenge". Plant Disease. 104 (9): 2301–2316. doi: 10.1094/PDIS-11-19-2378-FE . ISSN   0191-2917. PMID   32689886. S2CID   219479598.
  4. 1 2 Marcelino, Jose; Giordano, Rosanna; Gouli, Svetlana; Gouli, Vladimir; Parker, Bruce L.; Skinner, Margaret; TeBeest, David; Cesnik, Roberto (2008). "Colletotrichum acutatum var. fioriniae (teleomorph: Glomerella acutata var. fioriniae var. nov.) infection of a scale insect". Mycologia. 100 (3): 353–374. doi:10.3852/07-174R. ISSN   0027-5514. PMID   18751543. S2CID   8465617.
  5. Shivas, R.G.* and Tan, Y.P. (2009). "A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae comb. et stat. nov. and C. simmondsii sp. nov" (PDF). Fungal Diversity. 39: 111–122.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. Struble, F. Ben; Keitt, G. W. (1950). "Variability and Inheritance in Glomerella cingulata (Stonem.) S. and V. S. from Apple". American Journal of Botany. 37 (8): 563–576. doi:10.1002/j.1537-2197.1950.tb11045.x. ISSN   0002-9122.
  7. Shane, W. W. (1981). "Germination, Appressorium Formation, and Infection of Immature and Mature Apple Fruit byGlomerella cingulata". Phytopathology. 71 (4): 454. doi:10.1094/phyto-71-454. ISSN   0031-949X.
  8. Latham, A. J.; Williams, J. C. (1983). "Cultural Characteristics and Pathogenicity of Glomerella cingulata Isolates from Apples in Alabama". Plant Disease. 67 (10): 1065. doi:10.1094/PD-67-1065. ISSN   0191-2917.
  9. Vieira, Willie Anderson dos Santos; Bezerra, Priscila Alves; Silva, Anthony Carlos da; Veloso, Josiene Silva; Câmara, Marcos Paz Saraiva; Doyle, Vinson Patrick (2020). "Optimal markers for the identification of Colletotrichum species". Molecular Phylogenetics and Evolution. 143: 106694. doi:10.1016/j.ympev.2019.106694. PMID   31786239. S2CID   208537507.
  10. 1 2 3 Peres, N. A.; Timmer, L. W.; Adaskaveg, J. E.; Correll, J. C. (2005). "Lifestyles of Colletotrichum acutatum". Plant Disease. 89 (8): 784–796. doi: 10.1094/PD-89-0784 . ISSN   0191-2917. PMID   30786507.
  11. Wharton, Phillip S., and Javier Diéguez-Uribeondo (2004). "The biology of Colletotrichum acutatum". Anales del Jardín Botánico de Madrid. 61: 3–22. doi: 10.3989/ajbm.2004.v61.i1.61 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Martin, Phillip L.; Peter, Kari (2023). "Spore dispersal patterns of Colletotrichum fioriniae in orchards and the timing of apple bitter rot infection periods". Plant Disease. doi:10.1094/PDIS-08-22-1966-RE. ISSN   0191-2917.

Further reading