Creatinase

Last updated
creatinase
Identifiers
EC no. 3.5.3.3
CAS no. 37340-58-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Creatinase/Prolidase N-terminal domain
3O5V.pdb.jpg
The Crystal Structure of the Creatinase/Prolidase N-terminal domain of an X-PRO dipeptidase from Streptococcus pyogenes to 1.85A [1]
Identifiers
SymbolCreatinase_N
Pfam PF01321
InterPro IPR000587
SCOP2 1chm / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1wn1 B:2-131 1chm A:27-158 1kp0 B:27-157 1pv9 B:4-124 1wy2 B:7-127

In enzymology, a creatinase (EC 3.5.3.3) is an enzyme that catalyzes the chemical reaction

creatine + H2O sarcosine + urea

Thus, the two substrates of this enzyme are creatine and H2O, whereas its two products are sarcosine and urea.

The native enzyme was shown to be made up of two subunit monomers via SDS-polyacrylamide gel electrophoresis. The molecular weights of these subunits was estimated to be 47,000 g/mol. [2] The enzyme works as a homodimer, and is induced by choline chloride. Each monomer of creatinase has two clearly defined domains, a small N-terminal domain, and a large C-terminal domain. Each of the two active sites is made by residues of the large domain of one monomer and some residues of the small domain of the other monomer. It has been suggested that a sulfhydryl group is located on or near the active site of the enzyme following inhibition experiments. [2] Creatinase has been found to be most active at pH 8 and is most stable between ph 6-8 for 24 hrs. at 37 degrees. [2]

This enzyme belongs to the family of hydrolases, those acting on carbon-nitrogen bonds other than peptide bonds, specifically in linear amidines. The systematic name of this enzyme class is creatine amidinohydrolase. This enzyme participates in arginine and proline metabolism.

Structural studies

As of late 2007, two structures have been solved for this class of enzymes, with PDB accession codes 1CHM and 1KP0.

Related Research Articles

<span class="mw-page-title-main">Factor XIII</span>

Factor XIII or fibrin stabilizing factor is a zymogen found in blood of humans and some other animals. It is activated by thrombin to factor XIIIa. Factor XIIIa is an enzyme of the blood coagulation system that crosslinks fibrin. Deficiency of XIII worsens clot stability and increases bleeding tendency.

<span class="mw-page-title-main">Hemagglutinin esterase</span> Glycoprotein present in some enveloped viruses

Hemagglutinin esterase (HEs) is a glycoprotein that certain enveloped viruses possess and use as an invading mechanism. HEs helps in the attachment and destruction of certain sialic acid receptors that are found on the host cell surface. Viruses that possess HEs include influenza C virus, toroviruses, and coronaviruses of the subgenus Embecovirus. HEs is a dimer transmembrane protein consisting of two monomers, each monomer is made of three domains. The three domains are: membrane fusion, esterase, and receptor binding domains.

<span class="mw-page-title-main">Glycogen debranching enzyme</span> Mammalian protein found in Homo sapiens

A debranching enzyme is a molecule that helps facilitate the breakdown of glycogen, which serves as a store of glucose in the body, through glucosyltransferase and glucosidase activity. Together with phosphorylases, debranching enzymes mobilize glucose reserves from glycogen deposits in the muscles and liver. This constitutes a major source of energy reserves in most organisms. Glycogen breakdown is highly regulated in the body, especially in the liver, by various hormones including insulin and glucagon, to maintain a homeostatic balance of blood-glucose levels. When glycogen breakdown is compromised by mutations in the glycogen debranching enzyme, metabolic diseases such as Glycogen storage disease type III can result.

<span class="mw-page-title-main">Argininosuccinate synthase</span> Enzyme

Argininosuccinate synthase or synthetase is an enzyme that catalyzes the synthesis of argininosuccinate from citrulline and aspartate. In humans, argininosuccinate synthase is encoded by the ASS gene located on chromosome 9.

Pilin refers to a class of fibrous proteins that are found in pilus structures in bacteria. These structures can be used for the exchange of genetic material, or as a cell adhesion mechanism. Although not all bacteria have pili or fimbriae, bacterial pathogens often use their fimbriae to attach to host cells. In Gram-negative bacteria, where pili are more common, individual pilin molecules are linked by noncovalent protein-protein interactions, while Gram-positive bacteria often have polymerized LPXTG pilin.

<span class="mw-page-title-main">Sucrase-isomaltase</span>

Oligo-1,6-glucosidase is a glucosidase enzyme located on the brush border of the small intestine, which catalyses the following reaction:

<span class="mw-page-title-main">Carbamoyl phosphate synthetase</span> Class of enzymes

Carbamoyl phosphate synthetase catalyzes the ATP-dependent synthesis of carbamoyl phosphate from glutamine or ammonia and bicarbonate. This enzyme catalyzes the reaction of ATP and bicarbonate to produce carboxy phosphate and ADP. Carboxy phosphate reacts with ammonia to give carbamic acid. In turn, carbamic acid reacts with a second ATP to give carbamoyl phosphate plus ADP.

<span class="mw-page-title-main">Riboflavin synthase</span>

Riboflavin synthase is an enzyme that catalyzes the final reaction of riboflavin biosynthesis. It catalyzes the transfer of a four-carbon unit from one molecule of 6,7-dimethyl-8-ribityllumazine onto another, resulting in the synthesis of riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione:

<span class="mw-page-title-main">Amine oxidase (copper-containing)</span>

Amine oxidase (copper-containing) (AOC) (EC 1.4.3.21 and EC 1.4.3.22; formerly EC 1.4.3.6) is a family of amine oxidase enzymes which includes both primary-amine oxidase and diamine oxidase; these enzymes catalyze the oxidation of a wide range of biogenic amines including many neurotransmitters, histamine and xenobiotic amines. They act as a disulphide-linked homodimer. They catalyse the oxidation of primary amines to aldehydes, with the subsequent release of ammonia and hydrogen peroxide, which requires one copper ion per subunit and topaquinone as cofactor:

Tyrosine—tRNA ligase, also known as tyrosyl-tRNA synthetase is an enzyme that is encoded by the gene YARS. Tyrosine—tRNA ligase catalyzes the chemical reaction

<span class="mw-page-title-main">Allantoicase</span>

Allantoicase is an enzyme (EC 3.5.3.4) that in humans is encoded by the ALLC gene. Allantoicase catalyzes the chemical reaction

<span class="mw-page-title-main">Creatininase</span>

In enzymology, a creatininase (EC 3.5.2.10) is an enzyme that catalyses the hydrolysis of creatinine to creatine, which can then be metabolised to urea and sarcosine by creatinase.

<span class="mw-page-title-main">PEPD</span> Protein-coding gene in the species Homo sapiens

Xaa-Pro dipeptidase, also known as prolidase, is an enzyme that in humans is encoded by the PEPD gene.

<span class="mw-page-title-main">Sortase</span> Group of prokaryotic enzymes

Sortase refers to a group of prokaryotic enzymes that modify surface proteins by recognizing and cleaving a carboxyl-terminal sorting signal. For most substrates of sortase enzymes, the recognition signal consists of the motif LPXTG (Leu-Pro-any-Thr-Gly), then a highly hydrophobic transmembrane sequence, followed by a cluster of basic residues such as arginine. Cleavage occurs between the Thr and Gly, with transient attachment through the Thr residue to the active site Cys residue, followed by transpeptidation that attaches the protein covalently to cell wall components. Sortases occur in almost all Gram-positive bacteria and the occasional Gram-negative bacterium or Archaea, where cell wall LPXTG-mediated decoration has not been reported. Although sortase A, the "housekeeping" sortase, typically acts on many protein targets, other forms of sortase recognize variant forms of the cleavage motif, or catalyze the assembly of pilins into pili.

<span class="mw-page-title-main">Cyanase</span>

The enzyme cyanase, catalyses the bicarbonate dependent metabolism of cyanate to produce ammonia and carbon dioxide. The systematic name of this enzyme is carbamate hydrolyase. In E. coli, cyanase is an inducible enzyme and is encoded for by the cynS gene. Cyanate is a toxic anion, and cyanase catalyzes the metabolism into the benign products of carbon dioxide and ammonia.

<span class="mw-page-title-main">Peptidyl-dipeptidase Dcp</span> Class of enzymes

Peptidyl-dipeptidase Dcp (EC 3.4.15.5, dipeptidyl carboxypeptidase (Dcp), dipeptidyl carboxypeptidase) is a metalloenzyme found in the cytoplasm of bacterium E. Coli responsible for the C-terminal cleavage of a variety of dipeptides and unprotected larger peptide chains. The enzyme does not hydrolyze bonds in which P1' is Proline, or both P1 and P1' are Glycine. Dcp consists of 680 amino acid residues that form into a single active monomer which aids in the intracellular degradation of peptides. Dcp coordinates to divalent zinc which sits in the pocket of the active site and is composed of four subsites: S1’, S1, S2, and S3, each subsite attracts certain amino acids at a specific position on the substrate enhancing the selectivity of the enzyme. The four subsites detect and bind different amino acid types on the substrate peptide in the P1 and P2 positions. Some metallic divalent cations such as Ni+2, Cu+2, and Zn+2 inhibit the function of the enzyme around 90%, whereas other cations such as Mn+2, Ca+2, Mg+2, and Co+2 have slight catalyzing properties, and increase the function by around 20%. Basic amino acids such as Arginine bind preferably at the S1 site, the S2 site sits deeper in the enzyme therefore is restricted to bind hydrophobic amino acids with phenylalanine in the P2 position. Dcp is divided into two subdomains (I, and II), which are the two sides of the clam shell-like structure and has a deep inner cavity where a pair of histidine residues bind to the catalytic zinc ion in the active site. Peptidyl-Dipeptidase Dcp is classified like Angiotensin-I converting enzyme (ACE) which is also a carboxypeptidase involved in blood pressure regulation, but due to structural differences and peptidase activity between these two enzymes they had to be examined separately. ACE has endopeptidase activity, whereas Dcp strictly has exopeptidase activity based on its cytoplasmic location and therefore their mechanisms of action are differentiated. Another difference between these enzymes is that the activity of Peptidyl-Dipeptidase Dcp is not enhanced in the presence of chloride anions, whereas chloride enhances ACE activity.

Lysine carboxypeptidase is an enzyme. This enzyme catalyses the following chemical reaction:

Sortase A is an enzyme. This enzyme catalyses a cell wall sorting reaction, in which a surface protein with a sorting signal containing a LPXTG motif, is cleaved between the Thr and Gly residue.

<span class="mw-page-title-main">Dihydrodipicolinate synthase</span> Class of enzymes

4-Hydroxy-tetrahydrodipicolinate synthase (EC 4.3.3.7, dihydrodipicolinate synthase, dihydropicolinate synthetase, dihydrodipicolinic acid synthase, L-aspartate-4-semialdehyde hydro-lyase (adding pyruvate and cyclizing), dapA (gene)) is an enzyme with the systematic name L-aspartate-4-semialdehyde hydro-lyase (adding pyruvate and cyclizing; (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinate-forming). This enzyme catalyses the following chemical reaction

N-acetyl-β-d-glucosaminidase(EC 3.2.1.30; EC 3.2.1.52) is a mesophilic hydrolase that specifically hydrolyzes N-acetyl-glucosides. The enzyme is found across a wide variety of marine and terrestrial creatures with the primary function of breaking down oligosaccharides in the presence of water. One of the primary functions of the enzyme is to target and hydrolyze oligosaccharides containing chitin. In this chitinase function, the enzyme contributes to the ability of many organisms to break down chitin-containing molecules and subsequently digest or re-uptake environmental chitin, carbon, or nitrogen. The enzyme's crystal structure varies slightly across organisms, but is characterized by three or four domains with one active site. Across proteins, the active site entails an α-β barrel with either an arginine or tryptophan residues in the barrel pocket to bind incoming substrate.

References

  1. "RCSB Protein Data Bank - Structure Summary for 3O5V - The Crystal Structure of the Creatinase/Prolidase N-terminal domain of an X-PRO dipeptidase from Streptococcus pyogenes to 1.85A".
  2. 1 2 3 Yoshimoto T, Oka I, Tsuru D (June 1976). "Purification, crystallization, and some properties of creatine amidinohydrolase from Pseudomonas putida". J. Biochem. 79 (6): 1381–3. doi:10.1093/oxfordjournals.jbchem.a131193. PMID   8443.