Cyclic reduction

Last updated

Cyclic reduction is a numerical method for solving large linear systems by repeatedly splitting the problem. Each step eliminates even or odd rows and columns of a matrix and remains in a similar form. The elimination step is relatively expensive but splitting the problem allows parallel computation.

Contents

Applicability

The method only applies to matrices that can be represented as a (block) Toeplitz matrix. Such problems often arise in implicit solutions for partial differential equations on a lattice. For example fast solvers for Poisson's equation express the problem as solving a tridiagonal matrix, discretising the solution on a regular grid.

Accuracy

Systems which have good numerical stability initially tend to get better with each step. Moreover, to a point where a good approximate solution can be given, [1] but because the special matrix form must be preserved pivoting cannot be performed to improve numerical accuracy.

Comparison to multigrid

The method is not iterative, it seeks an exact solution to the linear problem consistent with the given boundary values, contrast that with the similar but computationally cheaper multigrid method which propagates error-correction estimates down and allows for different relaxation parameters at different scales, the iterative aspect allowing better incorporation of non-linear features.

Combination with fast Fourier transform FFT

Transforming from the spatial domain and restating the PDE is called a spectral method, Fourier analysis and cyclic reduction are combined in the FACR algorithm [2] which is explained in Numerical Recipes – see 19.4 Fourier and Cyclic Reduction Methods for Boundary Value Problems. [3]

Notes and references

  1. Walter Gander and Gene H. Golub, Cyclic Reduction – History and Applications, Proceedings of the Workshop on Scientific Computing 10–12 March 1997
  2. P. N. Swarztrauber, The method of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle, Society for Industrial and Applied Mathematics' SIAM Review 19 pp. 490–501 1977
  3. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery Numerical Recipes In 'C': The Art Of Scientific Computing Archived 2013-08-06 at the Wayback Machine p 885 ISBN   0-521-43108-5 Cambridge University Press 1988–1992


Related Research Articles

<span class="mw-page-title-main">Gaussian elimination</span> Algorithm for solving systems of linear equations

In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855). To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations:

In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the i-th approximation is derived from the previous ones.

<span class="mw-page-title-main">Numerical analysis</span> Study of algorithms using numerical approximation

Numerical analysis is the study of algorithms that use numerical approximation for the problems of mathematical analysis. It is the study of numerical methods that attempt to find approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences like economics, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics, numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living cells in medicine and biology.

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs).

In numerical analysis, a multigrid method is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in problems exhibiting multiple scales of behavior. For example, many basic relaxation methods exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a Fourier analysis approach to multigrid. MG methods can be used as solvers as well as preconditioners.

<span class="mw-page-title-main">Computational electromagnetics</span> Branch of physics

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment using computers.

<span class="mw-page-title-main">Gene H. Golub</span> American mathematician

Gene Howard Golub, was an American numerical analyst who taught at Stanford University as Fletcher Jones Professor of Computer Science and held a courtesy appointment in electrical engineering.

Computational mechanics is the discipline concerned with the use of computational methods to study phenomena governed by the principles of mechanics. Before the emergence of computational science as a "third way" besides theoretical and experimental sciences, computational mechanics was widely considered to be a sub-discipline of applied mechanics. It is now considered to be a sub-discipline within computational science.

Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible.

Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations,

In numerical mathematics, relaxation methods are iterative methods for solving systems of equations, including nonlinear systems.

In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations. It is a popular method for solving the large matrix equations that arise in systems theory and control, and can be formulated to construct solutions in a memory-efficient, factored form. It is also used to numerically solve parabolic and elliptic partial differential equations, and is a classic method used for modeling heat conduction and solving the diffusion equation in two or more dimensions. It is an example of an operator splitting method.

<span class="mw-page-title-main">Finite element method</span> Numerical method for solving physical or engineering problems

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

hp-FEM is a generalization of the finite element method (FEM) for solving partial differential equations numerically based on piecewise-polynomial approximations. hp-FEM originates from the discovery by Barna A. Szabó and Ivo Babuška that the finite element method converges exponentially fast when the mesh is refined using a suitable combination of h-refinements and p-refinements .The exponential convergence of hp-FEM has been observed by numerous independent researchers.

The following is a timeline of scientific computing, also known as computational science.

The following is a timeline of numerical analysis after 1945, and deals with developments after the invention of the modern electronic computer, which began during Second World War. For a fuller history of the subject before this period, see timeline and history of mathematics.

Validated numerics, or rigorous computation, verified computation, reliable computation, numerical verification is numerics including mathematically strict error evaluation, and it is one field of numerical analysis. For computation, interval arithmetic is used, and all results are represented by intervals. Validated numerics were used by Warwick Tucker in order to solve the 14th of Smale's problems, and today it is recognized as a powerful tool for the study of dynamical systems.