![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
In mathematics, a D-space is a topological space where for every neighborhood assignment of that space, a cover can be created from the union of neighborhoods from the neighborhood assignment of some closed discrete subset of the space.
An open neighborhood assignment is a function that assigns an open neighborhood to each element in the set. More formally, given a topological space . An open neighborhood assignment is a function where is an open neighborhood.
A topological space is a D-space if for every given neighborhood assignment , there exists a closed discrete subset of the space such that .
The notion of D-spaces was introduced by Eric Karel van Douwen and E.A. Michael. It first appeared in a 1979 paper by van Douwen and Washek Frantisek Pfeffer in the Pacific Journal of Mathematics. [1] Whether every Lindelöf and regular topological space is a D-space is known as the D-space problem. This problem is among twenty of the most important problems of set theoretic topology. [2]