Deoxyhypusine synthase

Last updated
Deoxyhypusine synthase
Identifiers
EC no. 2.5.1.46
CAS no. 127069-31-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Deoxyhypusine synthase (EC 2.5.1.46, spermidine:eIF5A-lysine 4-aminobutyltransferase (propane-1,3-diamine-forming)) is an enzyme with systematic name (eIF5A-precursor)-lysine:spermidine 4-aminobutyltransferase (propane-1,3-diamine-forming). [1] [2] [3] [4] [5] [6] [7] [8] [9] This enzyme catalyses the following chemical reaction

[eIF5A-precursor]-lysine + spermidine [eIF5A-precursor]-deoxyhypusine + propane-1,3-diamine (overall reaction)
(1a) spermidine + NAD+ dehydrospermidine + NADH
(1b) dehydrospermidine + [enzyme]-lysine N-(4-aminobutylidene)-[enzyme]-lysine + propane-1,3-diamine
(1c) N-(4-aminobutylidene)-[enzyme]-lysine + [eIF5A-precursor]-lysine N-(4-aminobutylidene)-[eIF5A-precursor]-lysine + [enzyme]-lysine
(1d) N-(4-aminobutylidene)-[eIF5A-precursor]-lysine + NADH + H+ [eIF5A-precursor]-deoxyhypusine + NAD+

The eukaryotic initiation factor eIF5A contains a hypusine residue that is essential for activity.

Related Research Articles

Hypusine is an uncommon amino acid found in all eukaryotes and in some archaea, but not in bacteria. The only known proteins containing the hypusine residue is eukaryotic translation initiation factor 5A (eIF-5A) and a similar protein found in archaea. In humans, two isoforms of eIF-5A have been described: eIF5A-1 and eIF5A-2. They are encoded by two distinct genes EIF5A and EIF5A2. The protein is involved in protein biosynthesis and promotes the formation of the first peptide bond. The region surrounding the hypusine residue is highly conserved and is essential to the function of eIF5A. Thus, hypusine and eIF-5A appear to be vital for the viability and proliferation of eukaryotic cells.

In enzymology, a spermidine dehydrogenase (EC 1.5.99.6) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">EIF5A</span> Protein-coding gene in humans

Eukaryotic translation initiation factor 5A-1 is a protein that in humans is encoded by the EIF5A gene.

In enzymology, a glutathionylspermidine synthase is an enzyme that catalyzes the chemical reaction

In enzymology, a homospermidine synthase (spermidine-specific) is an enzyme that catalyzes the chemical reaction

In enzymology, a sym-norspermidine synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">DHPS</span> Protein-coding gene in the species Homo sapiens

Deoxyhypusine synthase is an enzyme that in humans is encoded by the DHPS gene.

TRNA-dihydrouridine20a/20b synthase (NAD(P)+) (EC 1.3.1.90, Dus4p) is an enzyme with systematic name tRNA-5,6-dihydrouracil20a/20b:NAD(P)+ oxidoreductase. This enzyme catalyses the following chemical reaction

TRNA-dihydrouridine20 synthase (NAD(P)+) (EC 1.3.1.91, Dus2p, tRNA-dihydrouridine synthase 2) is an enzyme with systematic name tRNA-5,6-dihydrouracil20:NAD(P)+ oxidoreductase. This enzyme catalyses the following chemical reaction

Carboxynorspermidine synthase (EC 1.5.1.43, carboxynorspermidine dehydrogenase, carboxyspermidine dehydrogenase, CASDH, CANSDH) is an enzyme with systematic name carboxynorspermidine:NADP+ oxidoreductase. This enzyme catalyses the following chemical reactions

N1-acetylpolyamine oxidase (EC 1.5.3.13, hPAO-1, mPAO, hPAO) is an enzyme with systematic name N1-acetylpolyamine:oxygen oxidoreductase (3-acetamidopropanal-forming). This enzyme catalyses the following chemical reaction

Polyamine oxidase (propane-1,3-diamine-forming) (EC 1.5.3.14, MPAO, maize PAO) is an enzyme with systematic name spermidine:oxygen oxidoreductase (propane-1,3-diamine-forming). This enzyme catalyses the following chemical reaction

Cholest-4-en-3-one 26-monooxygenase (EC 1.14.13.141, CYP125, CYP125A1, cholest-4-en-3-one 27-monooxygenase) is an enzyme with systematic name cholest-4-en-3-one,NADH:oxygen oxidoreductase (26-hydroxylating). This enzyme catalyses the following chemical reaction

Glucuronosyl-N-acetylgalactosaminyl-proteoglycan 4-beta-N-acetylgalactosaminyltransferase is an enzyme with systematic name UDP-N-acetyl-D-galactosamine:beta-D-glucuronosyl-(1->3)-N-acetyl-beta-D-galactosaminyl-proteoglycan 4-beta-N-acetylgalactosaminyltransferase. This enzyme catalyses the following chemical reaction

Homospermidine synthase (EC 2.5.1.44) is an enzyme with systematic name putrescine:putrescine 4-aminobutyltransferase (ammonia-forming). This enzyme catalyses the following chemical reaction

Carboxynorspermidine decarboxylase (EC 4.1.1.96, carboxyspermidine decarboxylase, CANSDC, VC1623 (gene)) is an enzyme with systematic name carboxynorspermidine carboxy-lyase (bis(3-aminopropyl)amine-forming). This enzyme catalyses the following chemical reaction

Cyclic pyranopterin monophosphate synthase is an enzyme with systematic name GTP 8,9-lyase . This enzyme catalyses the following chemical reaction

Colneleate synthase (EC 4.2.1.121, 9-divinyl ether synthase, 9-DES, CYP74D, CYP74D1, CYP74 cytochrome P-450, DES1) is an enzyme with systematic name (8E)-9-((1E,3E)-nona-1,3-dien-1-yloxy)non-8-enoate synthase. This enzyme catalyses the following chemical reaction

tRNA pseudouridine32 synthase is an enzyme with systematic name tRNA-uridine32 uracil mutase. This enzyme catalyses the following chemical reaction

tRNA pseudouridine38/39 synthase is an enzyme with systematic name tRNA-uridine38/39 uracil mutase. This enzyme catalyses the following chemical reaction

References

  1. Yoshioka H, Ramirez F (April 1990). "Pro-alpha 1(XI) collagen. Structure of the amino-terminal propeptide and expression of the gene in tumor cell lines". The Journal of Biological Chemistry. 265 (11): 6423–6. doi: 10.1016/S0021-9258(19)39343-3 . PMID   1690726.
  2. Wolff EC, Folk JE, Park MH (June 1997). "Enzyme-substrate intermediate formation at lysine 329 of human deoxyhypusine synthase". The Journal of Biological Chemistry. 272 (25): 15865–71. doi: 10.1074/jbc.272.25.15865 . PMID   9188485.
  3. Chen KY, Liu AY (1997). "Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A". Biological Signals. 6 (3): 105–9. doi:10.1159/000109115. PMID   9285092.
  4. Ober D, Hartmann T (November 1999). "Deoxyhypusine synthase from tobacco. cDNA isolation, characterization, and bacterial expression of an enzyme with extended substrate specificity". The Journal of Biological Chemistry. 274 (45): 32040–7. doi: 10.1074/jbc.274.45.32040 . PMID   10542236.
  5. Ober D, Hartmann T (December 1999). "Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase". Proceedings of the National Academy of Sciences of the United States of America. 96 (26): 14777–82. Bibcode:1999PNAS...9614777O. doi: 10.1073/pnas.96.26.14777 . PMC   24724 . PMID   10611289.
  6. Wolff EC, Park MH (January 1999). "Identification of lysine350 of yeast deoxyhypusine synthase as the site of enzyme intermediate formation". Yeast. 15 (1): 43–50. doi: 10.1002/(SICI)1097-0061(19990115)15:1<43::AID-YEA344>3.0.CO;2-K . PMID   10028184.
  7. Wolff EC, Wolff J, Park MH (March 2000). "Deoxyhypusine synthase generates and uses bound NADH in a transient hydride transfer mechanism". The Journal of Biological Chemistry. 275 (13): 9170–7. doi: 10.1074/jbc.275.13.9170 . PMID   10734052.
  8. Joe YA, Wolff EC, Park MH (September 1995). "Cloning and expression of human deoxyhypusine synthase cDNA. Structure-function studies with the recombinant enzyme and mutant proteins". The Journal of Biological Chemistry. 270 (38): 22386–92. doi: 10.1074/jbc.270.38.22386 . PMID   7673224.
  9. Tao Y, Chen KY (October 1995). "Molecular cloning and functional expression of Neurospora deoxyhypusine synthase cDNA and identification of yeast deoxyhypusine synthase cDNA". The Journal of Biological Chemistry. 270 (41): 23984–7. doi: 10.1074/jbc.270.41.23984 . PMID   7592594.