Deuterated DMSO

Last updated
Deuterated DMSO
DMSO deuterated structure.png
DMSO-d6.jpg
Names
Preferred IUPAC name
[(2H3)Methanesulfinyl](2H3)methane
Other names
Deuterated dimethyl sulfoxide, DMSO-d6
Identifiers
3D model (JSmol)
AbbreviationsDMSO-d6
1237248
ChemSpider
ECHA InfoCard 100.016.925 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 218-617-0
PubChem CID
RTECS number
  • PV6210000
  • InChI=1S/C2H6OS/c1-4(2)3/h1-2H3/i1D3,2D3 Yes check.svgY
    Key: IAZDPXIOMUYVGZ-WFGJKAKNSA-N Yes check.svgY
  • InChI=1S/C2H6OS/c1-4(2)3/h1-2H3/i1D3,2D3
    Key: IAZDPXIOMUYVGZ-WFGJKAKNSA-N
  • InChI=1/C2H6OS/c1-4(2)3/h1-2H3/i1D3,2D3
    Key: IAZDPXIOMUYVGZ-WFGJKAKNEE
  • [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H]
Properties
C2D6OS
Molar mass 84.17 g/mol
Density 1.19 g/cm3 (20 °C)
Melting point 20.2 °C (68.4 °F; 293.3 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Deuterated DMSO, also known as dimethyl sulfoxide-d6, is an isotopologue of dimethyl sulfoxide (DMSO, (CH3)2S=O)) with chemical formula ((CD3)2S=O) in which the hydrogen atoms ("H") are replaced with their isotope deuterium ("D"). Deuterated DMSO is a common solvent used in NMR spectroscopy.

Contents

Production

Deuterated DMSO is produced by heating DMSO in heavy water (D2O) with a basic catalyst such as calcium oxide. The reaction does not give complete conversion to the d6 product, and the water produced must be removed and replaced with D2O several times to drive the equilibrium to the fully deuterated product. [1]

Use in NMR spectroscopy

C NMR Spectrum of DMSO-d6 13CNMR Spectra of DMSO d6.gif
C NMR Spectrum of DMSO-d6

Pure deuterated DMSO shows no peaks in 1H NMR spectroscopy and as a result is commonly used as an NMR solvent. [2] However commercially available samples are not 100% pure and a residual DMSO-d51H NMR signal is observed at 2.50ppm (quintet, JHD=1.9Hz). The 13C chemical shift of DMSO-d6 is 39.52ppm (septet). [3]

Related Research Articles

<span class="mw-page-title-main">Heavy water</span> Form of water

Heavy water is a form of water whose hydrogen atoms are all deuterium rather than the common hydrogen-1 isotope that makes up most of the hydrogen in normal water. The presence of the heavier isotope gives the water different nuclear properties, and the increase in mass gives it slightly different physical and chemical properties when compared to normal water.

<span class="mw-page-title-main">Dimethyl sulfoxide</span> Organosulfur chemical compound used as a solvent

Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula (CH3)2SO. This colorless liquid is the sulfoxide most widely used commercially. It is an important polar aprotic solvent that dissolves both polar and nonpolar compounds and is miscible in a wide range of organic solvents as well as water. It has a relatively high boiling point. DMSO is metabolised to compounds that leave a garlic-like taste in the mouth after DMSO is absorbed by skin.

In nuclear magnetic resonance (NMR) spectroscopy, the chemical shift is the resonant frequency of an atomic nucleus relative to a standard in a magnetic field. Often the position and number of chemical shifts are diagnostic of the structure of a molecule. Chemical shifts are also used to describe signals in other forms of spectroscopy such as photoemission spectroscopy.

<span class="mw-page-title-main">Nuclear magnetic resonance spectroscopy</span> Laboratory technique

Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field. This re-orientation occurs with absorption of electromagnetic radiation in the radio frequency region from roughly 4 to 900 MHz, which depends on the isotopic nature of the nucleus and increased proportionally to the strength of the external magnetic field. Notably, the resonance frequency of each NMR-active nucleus depends on its chemical environment. As a result, NMR spectra provide information about individual functional groups present in the sample, as well as about connections between nearby nuclei in the same molecule. As the NMR spectra are unique or highly characteristic to individual compounds and functional groups, NMR spectroscopy is one of the most important methods to identify molecular structures, particularly of organic compounds.

<span class="mw-page-title-main">Tetramethylsilane</span> Chemical compound

Tetramethylsilane (abbreviated as TMS) is the organosilicon compound with the formula Si(CH3)4. It is the simplest tetraorganosilane. Like all silanes, the TMS framework is tetrahedral. TMS is a building block in organometallic chemistry but also finds use in diverse niche applications.

<span class="mw-page-title-main">Sulfoxide</span> Organic compound containing a sulfinyl group (>SO)

In organic chemistry, a sulfoxide, also called a sulphoxide, is an organosulfur compound containing a sulfinyl functional group attached to two carbon atoms. It is a polar functional group. Sulfoxides are oxidized derivatives of sulfides. Examples of important sulfoxides are alliin, a precursor to the compound that gives freshly crushed garlic its aroma, and dimethyl sulfoxide (DMSO), a common solvent.

Silicone grease, sometimes called dielectric grease, is a waterproof grease made by combining a silicone oil with a thickener. Most commonly, the silicone oil is polydimethylsiloxane (PDMS) and the thickener is amorphous fumed silica. Using this formulation, silicone grease is a translucent white viscous paste, with exact properties dependent on the type and proportion of the components. More specialized silicone greases are made from fluorinated silicones or, for low-temperature applications, PDMS containing some phenyl substituents in place of methyl groups. Other thickeners may be used, including stearates and powdered polytetrafluorethylene (PTFE). Greases formulated from silicone oils with silica thickener are sometimes referred to as silicone paste to distinguish them from silicone grease made with silicone oil and a soap thickener.

<span class="mw-page-title-main">Proton nuclear magnetic resonance</span> NMR via protons, hydrogen-1 nuclei

Proton nuclear magnetic resonance is the application of nuclear magnetic resonance in NMR spectroscopy with respect to hydrogen-1 nuclei within the molecules of a substance, in order to determine the structure of its molecules. In samples where natural hydrogen (H) is used, practically all the hydrogen consists of the isotope 1H.

Hydrogen–deuterium exchange is a chemical reaction in which a covalently bonded hydrogen atom is replaced by a deuterium atom, or vice versa. It can be applied most easily to exchangeable protons and deuterons, where such a transformation occurs in the presence of a suitable deuterium source, without any catalyst. The use of acid, base or metal catalysts, coupled with conditions of increased temperature and pressure, can facilitate the exchange of non-exchangeable hydrogen atoms, so long as the substrate is robust to the conditions and reagents employed. This often results in perdeuteration: hydrogen-deuterium exchange of all non-exchangeable hydrogen atoms in a molecule.

In stereochemistry, topicity is the stereochemical relationship between substituents and the structure to which they are attached. Depending on the relationship, such groups can be heterotopic, homotopic, enantiotopic, or diastereotopic.

In a chemical analysis, the internal standard method involves adding the same amount of a chemical substance to each sample and calibration solution. The internal standard responds proportionally to changes in the analyte and provides a similar, but not identical, measurement signal. It must also be absent from the sample matrix to ensure there is no other source of the internal standard present. Taking the ratio of analyte signal to internal standard signal and plotting it against the analyte concentrations in the calibration solutions will result in a calibration curve. The calibration curve can then be used to calculate the analyte concentration in an unknown sample.

<span class="mw-page-title-main">Trioxidane</span> Chemical compound

Trioxidane, also called hydrogen trioxide is an inorganic compound with the chemical formula H[O]
3
H
. It is one of the unstable hydrogen polyoxides. In aqueous solutions, trioxidane decomposes to form water and singlet oxygen:

Deuterated chloroform, also known as chloroform-d, is the organic compound with the formula CDCl3. Deuterated chloroform is a common solvent used in NMR spectroscopy. The properties of CDCl3 and ordinary CHCl3 (chloroform) are virtually identical.

<span class="mw-page-title-main">Deuterated acetone</span> Chemical compound

Deuterated acetone ((CD3)2CO), also known as acetone-d6, is a form (isotopologue) of acetone (CH3)2CO in which the hydrogen atom (H) is replaced with deuterium (heavy hydrogen) isotope (2H or D). Deuterated acetone is a common solvent used in NMR spectroscopy.

<span class="mw-page-title-main">Deuterated benzene</span> Chemical compound

Deuterated benzene (C6D6) is an isotopologue of benzene (C6H6) in which the hydrogen atom ("H") is replaced with deuterium (heavy hydrogen) isotope ("D").

This page provides supplementary chemical data on dimethyl sulfoxide.

The Spectral Database for Organic Compounds (SDBS) is a free online searchable database hosted by the National Institute of Advanced Industrial Science and Technology (AIST) in Japan, that contains spectral data for ca 34,000 organic molecules. The database is available in English and in Japanese and it includes six types of spectra: laser Raman spectra, electron ionization mass spectra (EI-MS), Fourier-transform infrared (FT-IR) spectra, 1H nuclear magnetic resonance (1H-NMR) spectra, 13C nuclear magnetic resonance (13C-NMR) spectra and electron paramagnetic resonance (EPR) spectra. The construction of the database started in 1982. Most of the spectra were acquired and recorded in AIST and some of the collections are still being updated. Since 1997, the database can be accessed free of charge, but its use requires agreeing to a disclaimer; the total accumulated number of times accessed reached 550 million by the end of January, 2015.

<span class="mw-page-title-main">Fluorine-19 nuclear magnetic resonance spectroscopy</span> Analytical technique

Fluorine-19 nuclear magnetic resonance spectroscopy is an analytical technique used to detect and identify fluorine-containing compounds. 19F is an important nucleus for NMR spectroscopy because of its receptivity and large chemical shift dispersion, which is greater than that for proton nuclear magnetic resonance spectroscopy.

<span class="mw-page-title-main">Deuterated solvent</span>

Deuterated solvents are a group of compounds where one or more hydrogen atoms are substituted by deuterium atoms.

<span class="mw-page-title-main">Transition metal sulfoxide complex</span> Class of coordination compounds containing sulfoxide ligands)

A transition metal sulfoxide complex is a coordination complex containing one or more sulfoxide ligands. The inventory is large.

References

  1. DEapplication 1171422B,Fruhstorfer, Wolfgang&Hampel, Bruno,"Process for the production of hexadeuterodimethyl sulfoxide",published 1964-06-04, assigned to E. Merck A.G.
  2. Chandak, MS; Nakamura, T; Takenaka, T; Chaudhuri, TK; Yagi-Utsumi, M; Chen, J; Kuwajima, K (22 January 2013). "The use of spin desalting columns in DMSO-quenched H/D-exchange NMR experiments" . Protein Sci . 22 (4). Hoboken, New Jersey, USA: Wiley-Blackwell: 486–91. doi:10.1002/pro.2221. PMC   3610054 . PMID   23339068 . Retrieved 2 June 2023.
  3. Gottlieb, Hugo E.; Kotlyar, Vadim; Nudelman, Abraham (17 October 1997). "NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities" . The Journal of Organic Chemistry . 62 (21). Washington, D.C., USA: American Chemical Society: 7512–7515. doi:10.1021/jo971176v. PMID   11671879 . Retrieved 18 June 2011.