Dibotryon morbosum

Last updated

Dibotryon morbosum
Black Knot.jpg
black knot on cherry
Scientific classification
Kingdom:
Phylum:
Subdivision:
Class:
Order:
Family:
Genus:
Species:
D. morbosum
Binomial name
Dibotryon morbosum
Synonyms

Dibotryon morbosum or Apiosporina morbosa is a plant pathogen, which is the causal agent of black knot. [1] [2] It affects members of the Prunus genus such as; cherry, plum, apricot, and chokecherry trees in North America. The disease produces rough, black growths that encircle and kill the infested parts, and provide habitat for insects.

Contents

The disease was first described in 1821 in Pennsylvania, but has spread across North America. While it was one of the most destructive diseases of plum and cherry trees in the late 19th century, today it is relatively well controlled in many cultivated areas and seen primarily in poorly managed orchards, or where strongly established, including in the wild. Many urban centres in North America have black knot control programs.

Black knot occurs only on the woody parts of trees, primarily on twigs and branches, but can spread to larger limbs and even the trunk. Olive-green swellings from the disease are visible in the late spring; as it spreads and matures, typically by autumn, rough black knots circle and kill affected parts. The knots vary in diameter from one inch to one foot (2.5–30 cm). Older knots can kill trees by promoting insect infestations.

The most common treatments are pruning infected parts during the winter and spraying buds with a fungicide. Nearby wild plants with the disease must also be treated.

Hosts and symptoms

Dibotryon morbosum is a fungus that affects the genus Prunus. Included in this genus are multiple species of trees and shrubs, such as: Dibotryon morbosum infects are Prunus serotina (wild cherry trees), Prunus persica (peach trees), Prunus domestica (plum trees), and Prunus cerasus (sour cherry trees). [3] The main symptom of Dibotryon morbosum is its “knot-like” gall structure. These knots can vary in size from anywhere to 13–305 mm (0.5–12 in) long, and up to 51 mm (2 in) wide. This fungus is typically diagnosed by these large black galls at the site of infection. The first signs of these symptoms are noticed during the winter because leaves are not obscuring the view. The first noticeable symptoms are small, light brown swellings. The next season, these swellings will turn dark green and have a velvety texture. The green swellings will darken and harden into the large black knots. These swellings often start as green in color during the beginning of the summer season and become black at the end of summer. [4]

Disease cycle

Dibotryon morbosum has a relatively simple disease cycle. In the spring, after overwintering in a previous host, the fungus produces ascospores, which are stored in a fruiting structure known as the pseudothecia. These ascospores then get dispersed by the wind and rain until they find a susceptible host. [4] They typically infect their host on wounded tissue or shoots. The infection is not systemic but does grow and spread from the initial infection site. Symptoms are typically not noticeable in the season of initial infection, as the fungus grows inside the host. Throughout the summer, conidia are produced which also get dispersed by wind and rain. Conidia are asexual spores that help the fungus to spread within a given growing season. The conidia help the fungus germinate and produce other generations of the fungus, after, the conidia also helps the spores disperse by releasing them and allowing them to disperse through the wind. [4] The fungus then overwinters within the shoots and tissue of the host. It then produces ascospores in the spring to begin the cycle anew, but only after it has grown on its host for two winters. It will not produce ascospores the first season after initial infection but will continue to produce asexual conidia.

Pathogenesis

Dibotryon morbosum produces pseudothecia, fruiting structures that are embedded in the black stroma on the surface of the gall. [5] In the spring, two winters after initial infection, the fungus produces sexual spores called ascospores. The ascospores mature during the early spring of the infection's second season and are forcibly discharged into the air during rain events. The spores are distributed short distances on wind currents and through rain splashing. The anamorph, or asexual stage, produces abundant olive-green conidia during the summer on the surfaces of one-year-old knots. [5] The infection capabilities of the conidia are quite limited. Therefore, management strategies are focused on ascospore development and infection processes.

Environment

The fungus Dibotryon morbosum overwinters in the knots and once the ascospores are released. The spores are released during the wet periods of spring. The wind and rain carry these spores to infect young saplings or wounded branches. [5] The fungus favors warm and wet weather with any temperature within 60–80 degrees Fahrenheit as it is the most ideal for dissemination, germination, and infection of new plant tissue. Rainfall is also significant because it causes the spores to be released and begin infecting new plant tissue. The splashing of the rain helps transfer the ascospores along with air currents.

Management

There are several ways that Dibotryon morbosum is managed. The first way to manage this pathogen is to choose strains that are genetically resistant. There are several resistant species of the genus Prunus that can be used, such as Prunus maackii , Prunus armeniaca , and Prunus triloba . Cultural management can also be used to help prevent Dibotryon morbosum. Removing the source of inoculum, ascospores, by pruning plants can be effective in managing this fungus. Winter is the best time to look for galls since there are no leaves to obscure. By removing the galls the ascospores won't mature and spread to healthy tissues. Pruning the branches should happen before spring as that is the time the buds break.  It is also important to consider where Prunus species are planted. Areas that are known to have had issues with Dibotryon morbosum should be avoided because the black knot is a widespread fungal disease and will easily attack new growth and cause deterioration of plant and fruit growth. [6]

Chemical management can also be an effective way to manage Dibotryon morbosum. Fungicides can be used, but they are only recommended for use in severe cases. Additionally, fungicides will only be effective if the source of inoculum is no longer present. Fungicides are only recommended for sites with valuable trees or very severe cases of the black knot. The fungicide will only work as a protectant if the cultural practices that were before mentioned are being done as well. [7]

Related Research Articles

<span class="mw-page-title-main">Apple scab</span> Plant disease caused by fungus

Apple scab is a common disease of plants in the rose family (Rosaceae) that is caused by the ascomycete fungus Venturia inaequalis. While this disease affects several plant genera, including Sorbus, Cotoneaster, and Pyrus, it is most commonly associated with the infection of Malus trees, including species of flowering crabapple, as well as cultivated apple. The first symptoms of this disease are found in the foliage, blossoms, and developing fruits of affected trees, which develop dark, irregularly-shaped lesions upon infection. Although apple scab rarely kills its host, infection typically leads to fruit deformation and premature leaf and fruit drop, which enhance the susceptibility of the host plant to abiotic stress and secondary infection. The reduction of fruit quality and yield may result in crop losses of up to 70%, posing a significant threat to the profitability of apple producers. To reduce scab-related yield losses, growers often combine preventive practices, including sanitation and resistance breeding, with reactive measures, such as targeted fungicide or biocontrol treatments, to prevent the incidence and spread of apple scab in their crops.

<i>Uncinula necator</i> Species of fungus

Uncinula necator is a fungus that causes powdery mildew of grape. It is a common pathogen of Vitis species, including the wine grape, Vitis vinifera. The fungus is believed to have originated in North America. European varieties of Vitis vinifera are more or less susceptible to this fungus. Uncinula necator infects all green tissue on the grapevine, including leaves and young berries. It can cause crop loss and poor wine quality if untreated. The sexual stage of this pathogen requires free moisture to release ascospores from its cleistothecia in the spring. However, free moisture is not needed for secondary spread via conidia; high atmospheric humidity is sufficient. Its anamorph is called Oidium tuckeri.

<span class="mw-page-title-main">Black rot (grape disease)</span> Species of fungus

Grape black rot is a fungal disease caused by an ascomycetous fungus, Guignardia bidwellii, that attacks grape vines during hot and humid weather. “Grape black rot originated in eastern North America, but now occurs in portions of Europe, South America, and Asia. It can cause complete crop loss in warm, humid climates, but is virtually unknown in regions with arid summers.” The name comes from the black fringe that borders growing brown patches on the leaves. The disease also attacks other parts of the plant, “all green parts of the vine: the shoots, leaf and fruit stems, tendrils, and fruit. The most damaging effect is to the fruit”.

<i>Diplocarpon rosae</i> Species of fungus

Diplocarpon rosae is a fungus that creates the rose black spot disease. Because it was observed by people of various countries around the same time, the nomenclature for the fungus varied with about 25 different names. The asexual stage is now known to be Marssonina rosae, while the sexual and most common stage is known as Diplocarpon rosae.

<i>Venturia inaequalis</i> Species of fungus

Venturia inaequalis is an ascomycete fungus that causes the apple scab disease.

<span class="mw-page-title-main">Phomopsis cane and leaf spot</span> Fungal plant disease

Phomopsis cane and leaf spot occurs wherever grapes are grown. Phomopsis cane and leaf spot is more severe in grape-growing regions characterized by a humid temperate climate through the growing season. Crop losses up to 30% have been reported to be caused by Phomopsis cane and leaf spot.

<i>Erysiphe cruciferarum</i> Species of fungus

Erysiphe cruciferarum is a plant pathogen of the family Erysiphaceae, which causes the main powdery mildew of crucifers, including on Brassica crops, such as cauliflower, cabbage, broccoli, and Brussels sprouts. E. cruciferarum is distributed worldwide, and is of particular concentration in continental Europe and the Indian subcontinent. E. cruciferarum is an ascomycete fungus that has both sexual and asexual stages. It is also an obligate parasite that appears to have host specificity; for example, isolates from turnip will not infect Brussels sprout, and vice versa. While being a part of the family Erysiphaceae, it belongs to those members in which the conidia are formed singly and whose haustoria are multilobed.

Leptosphaeria coniothyrium is a plant pathogen. It can be found around the world.

<i>Monilinia laxa</i> Species of fungus

Monilinia laxa is a plant pathogen that is the causal agent of brown rot of stone fruits.

<i>Podosphaera leucotricha</i> Species of fungus

Podosphaera leucotricha is a plant pathogen that can cause powdery mildew of apples and pears.

<i>Podosphaera macularis</i> Species of fungus

Podosphaera macularis is a plant pathogen infecting several hosts including chamomile, caneberrie, strawberries, hop, hemp and Cineraria. It causes powdery mildew of hops.

<i>Ascochyta</i> Genus of fungi

Ascochyta is a genus of ascomycete fungi, containing several species that are pathogenic to plants, particularly cereal crops. The taxonomy of this genus is still incomplete. The genus was first described in 1830 by Marie-Anne Libert, who regarded the spores as minute asci and the cell contents as spherical spores. Numerous revisions to the members of the genus and its description were made for the next several years. Species that are plant pathogenic on cereals include, A. hordei, A. graminea, A. sorghi, A. tritici. Symptoms are usually elliptical spots that are initially chlorotic and later become a necrotic brown. Management includes fungicide applications and sanitation of diseased plant tissue debris.

The plant pathogenic fungus Leucostoma kunzei is the causal agent of Leucostoma canker, a disease of spruce trees found in the Northern Hemisphere, predominantly on Norway spruce and Colorado blue spruce. This disease is one of the most common and detrimental stem diseases of Picea species in the northeastern United States, yet it also affects other coniferous species. Rarely does it kill its host tree; however, the disease does disfigure by killing host branches and causing resin exudation from perennial lesions on branches or trunks.

<i>Ascochyta pisi</i> Species of fungus

Ascochyta pisi is a fungal plant pathogen that causes ascochyta blight on pea, causing lesions of stems, leaves, and pods. These same symptoms can also be caused by Ascochyta pinodes, and the two fungi are not easily distinguishable.

<i>Glomerella cingulata</i> Species of fungus

Glomerella cingulata is a fungal plant pathogen, being the name of the sexual stage (teleomorph) while the more commonly referred to asexual stage (anamorph) is called Colletotrichum gloeosporioides. For most of this article the pathogen will be referred to as C. gloeosporioides. This pathogen is a significant problem worldwide, causing anthracnose and fruit rotting diseases on hundreds of economically important hosts.

Peach scab, also known as peach freckles, is a disease of stone fruits caused by the fungi Cladosporium carpophilum. The disease is most prevalent in wet and warm areas especially southern part of the U.S. as the fungi require rain and wind for dispersal. The fungus causes scabbing, lesions, and defoliating on twig, fruit, and leaf resulting in downgrade of peach quality or loss of fruits due to rotting in severe cases.

<span class="mw-page-title-main">Banana freckle</span> Fungal disease of bananas

Banana freckle is a disease caused by the fungus Guignardia musae (teleomorph) or Phyllosticta musarum (anamorph). Generally, the causal agent of disease is referred to as Guignardia-Phyllosticta sp. There are several different strains of the fungus that exist to infect different banana varieties around the globe. Symptoms include yellowing of the tissue and formation of small dark brown spots on the leaves and fruit. Within the spots, conidia or pycnidia can be found. Banana freckle is easily propagated and spread from plant to plant by rain splash and movement of infected tissue or fruit. Management of the disease consists of cutting out infected leaves, using the paper bag method, fungicide application, and proper sanitation techniques it can be stopped by applying vegeta to it. This devastating disease is extremely relevant for the major banana exporting countries of the world. In the absence of chemical control, there is about a 78% yield loss. Banana freckle disease needs to be carefully monitored in order to prevent further spread of the disease.

<span class="mw-page-title-main">Cyclaneusma needle cast</span> Fungal plant disease

Cyclaneusma is a fungal disease that is a part of the phylum, Ascomycota. It infects plants that are of pine classification. After infection by Cyclaneusma, most pines do not display symptoms until 10 months after the initial infection. Symptoms include needles developing yellow spots, horizontal brown bands around the needles, swelling of needles, and off-white fruiting bodies formed on infected needles. Because Cyclaneusma is an ascomycete it produces two spore types, an asexual (conidiomata) and sexual (ascomycota) spore. Controlling Cyclaneusma has presented a challenge as the disease can survive on both living and dead needles during the winter months. Effective management methods include planting new pines in non-shaded, well drainable soil as well as spraying fungicide. Cyclaneusma Needle Cast is an important fungal disease because it directly impacts the commercial value of decorative pines as well as lumber.

<span class="mw-page-title-main">Hypoxylon canker of shade trees</span> Tree disease

Hypoxylon canker of shade trees is a weak ascomycete fungus that negatively affects growth and can eventually lead to the death of already dying or diseased host trees. There are many different species that affect different trees. For example, Hypoxylon atropunctatum, a common species, is found on oak trees, Hypoxylon tinctor affects sycamore trees, and Hypoxylon mammatum infests aspen trees.

Phyllosticta minima is a fungus of the division Ascomycota which causes purple-bordered leaf spot, a largely cosmetic disease that infects maple trees. It grows on living and fallen leaves, creating tan, ovular lesions 14 inch in diameter and ringed with 'purple' or black spores.

References

  1. Black Knot, Apiosporina morbosa at West Virginia University
  2. Distribution map of Apiosporina morbosa Archived 2007-09-27 at the Wayback Machine at European and Mediterranean Plant Protection Organization [ dead link ]
  3. "Black Knot". www.missouribotanicalgarden.org. Retrieved 2020-12-10.
  4. 1 2 3 "Black knot". Black knot. Retrieved 2020-12-10.
  5. 1 2 3 "Black knot". extension.umn.edu. Retrieved 2020-12-10.
  6. "Black Knot Disease: Symptoms, Treatment and Control". Planet Natural. Retrieved 2020-12-10.
  7. "How to Identify, Treat, and Prevent Black Knot". The Spruce. Retrieved 2020-12-10.