In mathematical analysis, a domain or region is a non-empty, connected, and open set in a topological space. In particular, it is any non-empty connected open subset of the real coordinate space Rn or the complex coordinate space Cn. A connected open subset of coordinate space is frequently used for the domain of a function. [lower-alpha 1]
The basic idea of a connected subset of a space dates from the 19th century, but precise definitions vary slightly from generation to generation, author to author, and edition to edition, as concepts developed and terms were translated between German, French, and English works. In English, some authors use the term domain, [1] some use the term region, [2] some use both terms interchangeably, [3] and some define the two terms slightly differently; [4] some avoid ambiguity by sticking with a phrase such as non-empty connected open subset. [5]
One common convention is to define a domain as a connected open set but a region as the union of a domain with none, some, or all of its limit points. [6] A closed region or closed domain is the union of a domain and all of its limit points.
Various degrees of smoothness of the boundary of the domain are required for various properties of functions defined on the domain to hold, such as integral theorems (Green's theorem, Stokes theorem), properties of Sobolev spaces, and to define measures on the boundary and spaces of traces (generalized functions defined on the boundary). Commonly considered types of domains are domains with continuous boundary, Lipschitz boundary, C1 boundary, and so forth.
A bounded domain is a domain that is bounded, i.e., contained in some ball. Bounded region is defined similarly. An exterior domain or external domain is a domain whose complement is bounded; sometimes smoothness conditions are imposed on its boundary.
In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function. In the study of several complex variables, the definition of a domain is extended to include any connected open subset of Cn.
In Euclidean spaces, one-, two-, and three-dimensional regions are curves, surfaces, and solids, whose extent are called, respectively, length , area , and volume .
Definition. An open set is connected if it cannot be expressed as the sum of two open sets. An open connected set is called a domain.
German: Eine offene Punktmenge heißt zusammenhängend, wenn man sie nicht als Summe von zwei offenen Punktmengen darstellen kann. Eine offene zusammenhängende Punktmenge heißt ein Gebiet.
According to Hans Hahn, [7] the concept of a domain as an open connected set was introduced by Constantin Carathéodory in his famous book ( Carathéodory 1918 ). In this definition, Carathéodory considers obviously non-empty disjoint sets. Hahn also remarks that the word "Gebiet" ("Domain") was occasionally previously used as a synonym of open set. [8] The rough concept is older. In the 19th and early 20th century, the terms domain and region were often used informally (sometimes interchangeably) without explicit definition. [9]
However, the term "domain" was occasionally used to identify closely related but slightly different concepts. For example, in his influential monographs on elliptic partial differential equations, Carlo Miranda uses the term "region" to identify an open connected set, [10] [11] and reserves the term "domain" to identify an internally connected, [12] perfect set, each point of which is an accumulation point of interior points, [10] following his former master Mauro Picone: [13] according to this convention, if a set A is a region then its closure A is a domain. [10]
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: It implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series. Holomorphic functions are the central objects of study in complex analysis.
In complex analysis, the Riemann mapping theorem states that if is a non-empty simply connected open subset of the complex number plane which is not all of , then there exists a biholomorphic mapping from onto the open unit disk
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.
In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by or , where f is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be".
In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions.
The zeroth law of thermodynamics is one of the four principal laws of thermodynamics. It provides an independent definition of temperature without reference to entropy, which is defined in the second law. The law was established by Ralph H. Fowler in the 1930s, long after the first, second, and third laws had been widely recognized.
The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.
In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic.
In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory, and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension. Outer measures are commonly used in the field of geometric measure theory.
In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation x ↦ f(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.
In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.
In mathematics, with special application to complex analysis, a normal family is a pre-compact subset of the space of continuous functions. Informally, this means that the functions in the family are not widely spread out, but rather stick together in a somewhat "clustered" manner. Note that a compact family of continuous functions is automatically a normal family. Sometimes, if each function in a normal family F satisfies a particular property , then the property also holds for each limit point of the set F.
In mathematics, Carathéodory's theorem is a theorem in complex analysis, named after Constantin Carathéodory, which extends the Riemann mapping theorem. The theorem, published by Carathéodory in 1913, states that any conformal mapping sending the unit disk to some region in the complex plane bounded by a Jordan curve extends continuously to a homeomorphism from the unit circle onto the Jordan curve. The result is one of Carathéodory's results on prime ends and the boundary behaviour of univalent holomorphic functions.
In mathematics, precisely in the theory of functions of several complex variables, a pluriharmonic function is a real valued function which is locally the real part of a holomorphic function of several complex variables. Sometimes such a function is referred to as n-harmonic function, where n ≥ 2 is the dimension of the complex domain where the function is defined. However, in modern expositions of the theory of functions of several complex variables it is preferred to give an equivalent formulation of the concept, by defining pluriharmonic function a complex valued function whose restriction to every complex line is a harmonic function with respect to the real and imaginary part of the complex line parameter.
In mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the n-dimensional complex space Cn. Pseudoconvex sets are important, as they allow for classification of domains of holomorphy.
In the theory of functions of several complex variables, Hartogs's extension theorem is a statement about the singularities of holomorphic functions of several variables. Informally, it states that the support of the singularities of such functions cannot be compact, therefore the singular set of a function of several complex variables must 'go off to infinity' in some direction. More precisely, it shows that an isolated singularity is always a removable singularity for any analytic function of n > 1 complex variables. A first version of this theorem was proved by Friedrich Hartogs, and as such it is known also as Hartogs's lemma and Hartogs's principle: in earlier Soviet literature, it is also called the Osgood–Brown theorem, acknowledging later work by Arthur Barton Brown and William Fogg Osgood. This property of holomorphic functions of several variables is also called Hartogs's phenomenon: however, the locution "Hartogs's phenomenon" is also used to identify the property of solutions of systems of partial differential or convolution equations satisfying Hartogs-type theorems.
In complex analysis of one and several complex variables, Wirtinger derivatives, named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of several complex variables, are partial differential operators of the first order which behave in a very similar manner to the ordinary derivatives with respect to one real variable, when applied to holomorphic functions, antiholomorphic functions or simply differentiable functions on complex domains. These operators permit the construction of a differential calculus for such functions that is entirely analogous to the ordinary differential calculus for functions of real variables.
In mathematics, a planar Riemann surface is a Riemann surface sharing the topological properties of a connected open subset of the Riemann sphere. They are characterized by the topological property that the complement of every closed Jordan curve in the Riemann surface has two connected components. An equivalent characterization is the differential geometric property that every closed differential 1-form of compact support is exact. Every simply connected Riemann surface is planar. The class of planar Riemann surfaces was studied by Koebe who proved in 1910, as a generalization of the uniformization theorem, that every such surface is conformally equivalent to either the Riemann sphere or the complex plane with slits parallel to the real axis removed.