ELF3

Last updated
EARLY FLOWERING 3
Identifiers
Organism Arabidopsis thaliana
SymbolELF3
Alt. symbolsPYK20
Entrez 817134
RefSeq (mRNA) NM_128153.3
RefSeq (Prot) NP_180164.1
UniProt O82804
Other data
Chromosome 2: 11.06 - 11.06 Mb
Search for
Structures Swiss-model
Domains InterPro

EARLY FLOWERING 3 (ELF3) is a plant-specific gene that encodes the hydroxyproline-rich glycoprotein and is required for the function of the circadian clock. [1] ELF3 is one of the three components that make up the Evening Complex (EC) within the plant circadian clock, in which all three components reach peak gene expression and protein levels at dusk. [2] ELF3 serves as a scaffold to bind EARLY FLOWERING 4 (ELF4) and LUX ARRHYTHMO (LUX), two other components of the EC, and functions to control photoperiod sensitivity in plants. [3] ELF3 also plays an important role in temperature and light input within plants for circadian clock entrainment. Additionally, it plays roles in light and temperature signaling that are independent from its role in the EC. [2]

Contents

Discovery

Along with ELF1 and ELF2, ELF3 was first identified by a research team consisting of Michelle T. Zagotta, S. Shannon, Carolyn I. Jacobs, and D. Ry Meeks‐Wagner. Their 1992 study published in Functional Plant Biology examined Arabidopsis thaliana mutants experiencing altered flowering. In Arabidopsis, the transition from vegetative to floral growth is initiated by floral signals in the shoot apex that regulate activity in the shoot meristem, and their study sought to identify the corresponding genetic components of this process by isolating early-flowering mutants. This procedure led the scientists to discover an early-flowering, photoperiod-insensitive Arabidopsis variant that was named elf3, as well as early-flowering, photoperiod-sensitive mutants named elf1 and elf2. [4]

Members of the research team behind the discovery of ELF3 then published a 1996 paper in The Plant Journal that detailed further insights about the nature of ELF3. The authors found that the elf3 mutation on chromosome 2 was at a novel genetic locus. Furthermore, they found that elf3 mutants were less sensitive to light of all wavelengths, suggesting that that ELF3 regulated flowering through an alternate photoreceptive pathway.

Structure

Arabidopsis thaliana ELF3
Gene
Number of Exons4
Size4.38 kb
LocusAT2G25930
mRNA
Number of Introns2747 bp
Protein
Molecular Weight77.5 kDa
pI8.68
Number of Amino Acids695
Location in Arabidopsis
Chromosome2
Coordinates11058944 - 11063324 bp
Orientationforward
Identifiers
Organism Arabidopsis thaliana
SymbolELF3
Alt symbolsPYK20, Early flowering 3
Entrez 817134
RefSeq (mRNA)NM_128153.3
RefSeq (Protein)NP_180164.1
UniProt O82804

In Arabidopsis thaliana , the ELF3 gene is located on the second chromosome and contains four exons and three introns. A cis-regulatory element known as the evening element (EE, AAAATATCT) is present in the promoters of the other evening complex genes, LUX and ELF4. [1] The EE serves as a binding site for the morning clock factors CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) to specifically inhibit the transcription of evening-expressed clock genes. The ELF3 promoter does not contain an EE; instead, it has an EE-like element (AATATCT) and two CCA1 binding sites, which allow CCA1 to repress ELF3 expression in the morning. [1]

The ELF3 gene encodes a novel, nuclear-localized protein that is 695 amino acids in length. [5] It contains an acidic region (residues 206–320) in its N-terminal, a proline-rich region (440-540) in the middle segment of the peptide sequence, and a glutamine/threonine-rich region (544-653) in its C-terminal. [5] Despite these known characteristics, only one domain of known function has been identified for ELF3. A putative prion-like domain, which is found in intrinsically disordered regions of proteins, has been predicted at amino acid residues 430–609. [6] [7] This prion-like domain is required for protein phase separation of ELF3 and the formation of nuclear speckles. [3] It also contains a glutamine-rich (polyQ) sequence that might be responsible for ELF3 temperature sensitivity. [7] Aside from this prion-like domain, any other functional domains that the ELF3 protein might contain have yet to be identified. The proline-rich, acidic, and glutamate/threonine regions are characteristics that are frequently associated with transcriptional regulators, but ELF3 lacks a DNA-binding domain, making it unlikely that it binds and regulates DNA on its own. [5] However, these characteristics are hypothesized to permit ELF3 to regulate transcription in concert with LUX and ELF4 as part of the EC. [1]

ELF3 is known to be a hub of protein-protein interactions, and the regions of the ELF3 peptide responsible for these interactions have been identified for some of its binding partners. ELF3 uses its N-terminal region to associate with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and GIGANTEA (GI) (residues 1–261) as well as with PHYTOCHROME B (PHYB) (residues 1–440). The middle region of ELF3 (residues 261–484) is required for interaction with ELF4, and the C-terminal region (residues 442–695) is required for ELF3 to bind to PHYTOCHROME INTERACTING FACTOR 4 (PIF4). The domain responsible for ELF3 interaction with LUX has not been tested. [1]

Function

Circadian oscillator

In living organisms, circadian oscillators are cyclic biochemical processes that produce daily rhythms. In Arabidopsis , ELF3, ELF4, and LUX comprise the evening complex, or EC, which regulates circadian rhythm in the growth and development of plants. The evening complex works in conjunction with the morning complex to form Arabidopsisrepressilator circadian oscillator. Throughout the day, CCA1 and LHY, morning complex transcription factors, regulate transcription of evening complex proteins by binding to the evening element regulatory areas, promoters of the evening complex genes. The evening complex, as a result, sees its activity peak at dusk, which is when ELF3, ELF4, and LUX see their expression peak. [1]

At night, the EC is responsible for repressing TIMING OF CAB EXPRESSION 1 (TOC1), GI, and the mid-day genes PSEUDO-RESPONSE REGULATOR 7 and 9 (PRR7 and 9), among other genes. [8] While TOC1 and the PRR proteins are repressed during the day by CCA1 and LHY, their expression peaks at dusk, repressing the morning complex proteins. The EC gradually inhibits TOC1 and the PRR proteins throughout the night, indirectly promoting CCA1 and LHY until they peak at dawn, promoting morning complex activity and inhibiting evening complex activity. The EC also represses LUX and ELF4, auto-regulating its own transcription. [9]

Inhibition of GI at night causes reduced expression of the flowering-promoting genes CONSTANS (CO) and FLOWERING LOCUS T (FT). The evening complex is also responsible for repressing the transcription growth factors PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5. Components of the EC, including ELF3 and LUX, interact with PIF4 and PIF5 to inhibit growth during nighttime. [1] [10]

Because ELF3 is essential for circadian rhythmicity, loss of ELF3 function in Arabidopsis renders the clock arrhythmic, as seen by observing outputs such as leaf movement and clock gene expression in constant conditions. [5]

Regulation of hypocotyl elongation

ELF3 is a negative regulator of seedling stem length, known as hypocotyl elongation. The EC suppresses hypocotyl elongation by inhibiting the expression of growth-promoting factors PIF4 and PIF5 in the evening. [9] At elevated temperatures, COP1-dependent degradation of ELF3 is enhanced, which allows the expression of genes like PIF4 and PIF5, promoting hypocotyl elongation in seedlings. [2] Independent of the evening complex, ELF3 directly interacts with the PIF4 protein to prevent it from activating its downstream gene targets, which would lead to elongation growth if activated. [2] ELF3 also inhibits hypocotyl elongation during shade avoidance response. Similar to its interaction with PIF4, under shaded conditions, ELF3 binds to and sequesters the transcriptional activator PIF7, preventing the activation of downstream, growth-promoting genes. [2]

Mutations in ELF3 in Arabidopsis promote the growth of long hypocotyls. Defects persist in both red-light and blue-light conditions, although they are less severe when the plants are grown in constant white light. [11] [12] Studies have shown that ELF3 mutations have additive effects on hypocotyl elongation (in interaction with phyB mutations). [11] [12]

Temperature signal integration

The EC is responsible for integrating temperature inputs into the circadian clock by regulating the expression of both core clock genes, such as PRR7/9, LUX, and GI, and clock outputs, like the gene PIF4, which controls hypocotyl elongation. [9] As part of the EC, association of ELF3 with the promoters of PRR9, LUX, and PIF4 is less stable at high temperatures, indicating that temperature inputs might directly control the recruitment of the evening complex to promoters. [1] In Arabidopsis seedlings shifted to warmer temperatures (from 22℃ to 28℃ or from 16℃ to 22℃), ELF3 was required to regulate the expression of GI, LUX, PIF4, PRR7, and PRR9. [1]

Light signal transduction

The ELF3 protein is also a component of the PHYB signaling complex to control hypocotyl elongation. PHYB is a protein that mediates the plant's responses to continuous red light. However, ELF3 and PHYB act on independent signal transduction pathways to mediate plant flowering. [13] It is suggested that ELF3 is able to regulate the photoperiodic induction of flowering by interacting with cryptochrome or other blue-light receptors such as ZEITLUPE (ZTL) and FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1) in Arabidopsis thaliana . [13]

Regulation of flowering time

In the long day facultative plant Arabidopsis, ELF3 is a key inhibitor of photoperiodic flowering when plants are grown in non-inductive environmental conditions. [1] The EC represses the expression of GI, a positive regulator of flowering, in the early night by binding to the GI promoter and preventing its activation. [2] Independent of the EC complex, ELF3 also regulates the accumulation of GI protein. [14] [2]

Mutations in ELF3 result in plants with a loss of photoperiod sensitivity and circadian regulation. [5] [1] Plants with elf3 mutations flower early in long day and short day conditions at the same developmental stage regardless of photoperiod. [5] elf3 mutations also result in plants that are not as responsive to some light wavelengths, especially blue and green light. However, elf3 single mutants retain functional phytochrome-mediated pathways that regulate plant flowering. [5] [15]

Regulation of plant senescence

Mutations in ELF3 have also been associated with the speed of plant aging, or plant senescence, through the EC inhibition of PIF4 and PIF5. [16] This prevents the process of leaf yellowing, an indicator of plant aging. In plants with ELF3 mutations, leaf yellowing occurred at a faster rate than wild type plants. [16] However, ELF3's regulation pathway for senescence has not been fully established. [16]

Homologs

ELF3 homologs have been identified across the plant lineage in basal land plants, such as mosses, as well as across angiosperms, in both monocot and dicot species.

Angiosperm orthologs

Soybean (Glycine max) has two ELF3 orthologs in its genome. One of these two paralogs, GmELF3, has been implicated in regulating photoperiodic flowering. Recently, GmELF3 was identified as being responsible for the long-juvenile trait in some varieties of soybean, which permits its cultivation in the tropics and other low-latitude areas. [17] Unlike in long-day facultative plants like Arabidopsis or barley, in short-day facultative plants (plants that reproduce in response to short days and long night) ELF3 appears to promote the transition from vegetative growth to reproductive growth. Mutations in GmELF3 delay flowering, allowing soybean plants to grow under the short days of low-latitude regions and still produce a reasonably sized harvest. [17]

In rice (Oryza sativa), the ELF3 ortholog OsELF3 is required for robust circadian oscillation and is involved in the photoperiodic regulation of flowering. [18]

Barley (Hordeum vulgare) has an ELF3 ortholog that is also necessary for circadian oscillation and regulates photoperiodic flowering, repressing the transition from vegetative to reproductive development under short days. [9] [19] In addition to an arrhythmic and early flowering phenotype, loss of elf3 function in barley causes plants grown under long-day conditions to reach reproductive maturity even faster in response to elevated temperatures (15 °C to 25 °C). Under short-days the same increase in temperature inhibited early/juvenile development. This suggested that the HvELF3 ortholog is also involved in temperature perception and temperature-mediated development. [20] Specific varieties of barley with mutations in HvELF3 have been developed to tolerate the extremely short growing seasons and long days in high-latitude regions, such as in Scandinavia. [20]

Other homologs

Multiple ELF3 homologs have been found in the genome of the model moss Physcomitrella patens , but it is currently unknown whether or not any of these PpELF3 paralogs have conserved function in circadian regulation or photoperiodic regulation of reproduction. [21]

No homolog of ELF3 has been found in either Chlamydomonas reinhardtii or Ostreococcus tauri , two representative species of green algae, the organisms that are thought to be the evolutionary ancestors of land plants. [21]

Related Research Articles

<span class="mw-page-title-main">Circadian rhythm</span> Natural internal process that regulates the sleep-wake cycle

A circadian rhythm, or circadian cycle, is a natural, internal process that regulates the sleep–wake cycle and repeats roughly every 24 hours. It can refer to any process that originates within an organism and responds to the environment. These 24-hour rhythms are driven by a circadian clock, and they have been widely observed in animals, plants, fungi and cyanobacteria.

Gibberellins (GAs) are plant hormones that regulate various developmental processes, including stem elongation, germination, dormancy, flowering, flower development, and leaf and fruit senescence. GAs are one of the longest-known classes of plant hormone. It is thought that the selective breeding of crop strains that were deficient in GA synthesis was one of the key drivers of the "green revolution" in the 1960s, a revolution that is credited to have saved over a billion lives worldwide.

In developmental biology, photomorphogenesis is light-mediated development, where plant growth patterns respond to the light spectrum. This is a completely separate process from photosynthesis where light is used as a source of energy. Phytochromes, cryptochromes, and phototropins are photochromic sensory receptors that restrict the photomorphogenic effect of light to the UV-A, UV-B, blue, and red portions of the electromagnetic spectrum.

Photoperiodism is the physiological reaction of organisms to the length of night or a dark period. It occurs in plants and animals. Plant photoperiodism can also be defined as the developmental responses of plants to the relative lengths of light and dark periods. They are classified under three groups according to the photoperiods: short-day plants, long-day plants, and day-neutral plants.

Shade avoidance is a set of responses that plants display when they are subjected to the shade of another plant. It often includes elongation, altered flowering time, increased apical dominance and altered partitioning of resources. This set of responses is collectively called the shade-avoidance syndrome (SAS).

<span class="mw-page-title-main">Cryptochrome</span> Class of photoreceptors in plants and animals

Cryptochromes are a class of flavoproteins found in plants and animals that are sensitive to blue light. They are involved in the circadian rhythms and the sensing of magnetic fields in a number of species. The name cryptochrome was proposed as a portmanteau combining the chromatic nature of the photoreceptor, and the cryptogamic organisms on which many blue-light studies were carried out.

Florigen is the hypothesized hormone-like molecule responsible for controlling and/or triggering flowering in plants. Florigen is produced in the leaves, and acts in the shoot apical meristem of buds and growing tips. It is known to be graft-transmissible, and even functions between species. Florigen has been found identical to the transcription factor FLOWERING LOCUS T (FT).

The repressilator is a genetic regulatory network consisting of at least one feedback loop with at least three genes, each expressing a protein that represses the next gene in the loop. In biological research, repressilators have been used to build cellular models and understand cell function. There are both artificial and naturally-occurring repressilators. Recently, the naturally-occurring repressilator clock gene circuit in Arabidopsis thaliana and mammalian systems have been studied.

<i>Cycle</i> (gene)

Cycle (cyc) is a gene in Drosophila melanogaster that encodes the CYCLE protein (CYC). The Cycle gene (cyc) is expressed in a variety of cell types in a circadian manner. It is involved in controlling both the sleep-wake cycle and circadian regulation of gene expression by promoting transcription in a negative feedback mechanism. The cyc gene is located on the left arm of chromosome 3 and codes for a transcription factor containing a basic helix-loop-helix (bHLH) domain and a PAS domain. The 2.17 kb cyc gene is divided into 5 coding exons totaling 1,625 base pairs which code for 413 aminos acid residues. Currently 19 alleles are known for cyc. Orthologs performing the same function in other species include ARNTL and ARNTL2.

Timing of CAB expression 1 is a protein that in Arabidopsis thaliana is encoded by the TOC1 gene. TOC1 is also known as two-component response regulator-like APRR1.

Circadian Clock Associated 1 (CCA1) is a gene that is central to the circadian oscillator of angiosperms. It was first identified in Arabidopsis thaliana in 1993. CCA1 interacts with LHY and TOC1 to form the core of the oscillator system. CCA1 expression peaks at dawn. Loss of CCA1 function leads to a shortened period in the expression of many other genes.

Steve A. Kay is a British-born chronobiologist who mainly works in the United States. Dr. Kay has pioneered methods to monitor daily gene expression in real time and characterized circadian gene expression in plants, flies and mammals. In 2014, Steve Kay celebrated 25 years of successful chronobiology research at the Kaylab 25 Symposium, joined by over one hundred researchers with whom he had collaborated with or mentored. Dr. Kay, a member of the National Academy of Sciences, U.S.A., briefly served as president of The Scripps Research Institute. and is currently a professor at the University of Southern California. He also served on the Life Sciences jury for the Infosys Prize in 2011.

Plants depend on epigenetic processes for proper function. Epigenetics is defined as "the study of changes in gene function that are mitotically and/or meiotically heritable and that do not entail a change in DNA sequence". The area of study examines protein interactions with DNA and its associated components, including histones and various other modifications such as methylation, which alter the rate or target of transcription. Epi-alleles and epi-mutants, much like their genetic counterparts, describe changes in phenotypes due to epigenetic mechanisms. Epigenetics in plants has attracted scientific enthusiasm because of its importance in agriculture.

LUX or Phytoclock1 (PCL1) is a gene that codes for LUX ARRHYTHMO, a protein necessary for circadian rhythms in Arabidopsis thaliana. LUX protein associates with Early Flowering 3 (ELF3) and Early Flowering 4 (ELF4) to form the Evening Complex (EC), a core component of the Arabidopsis repressilator model of the plant circadian clock. The LUX protein functions as a transcription factor that negatively regulates Pseudo-Response Regulator 9 (PRR9), a core gene of the Midday Complex, another component of the Arabidopsis repressilator model. LUX is also associated with circadian control of hypocotyl growth factor genes PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PHYTOCHROME INTERACTING FACTOR 5 (PIF5).

Andrew John McWalter Millar, FRS, FRSE is a Scottish chronobiologist, systems biologist, and molecular geneticist. Millar is a professor at The University of Edinburgh and also serves as its chair of systems biology. Millar is best known for his contributions to plant circadian biology; in the Steve Kay lab, he pioneered the use of luciferase imaging to identify circadian mutants in Arabidopsis. Additionally, Millar's group has implicated the ELF4 gene in circadian control of flowering time in Arabidopsis. Millar was elected to the Royal Society in 2012 and the Royal Society of Edinburgh in 2013.

Pseudo-response regulator (PRR) refers to a group of genes that are important in the plant circadian oscillator. There are four primary PRR proteins that perform the majority of interactions with other proteins within the circadian oscillator, and another (PRR3) that has limited function. These genes are all paralogs of each other, and all repress the transcription of Circadian Clock Associated 1 (CCA1) and Late Elongated Hypocotyl (LHY) at various times throughout the day. The expression of PRR9, PRR7, PRR5 and TOC1/PRR1 peak around morning, mid-day, afternoon and evening, respectively. As a group, these genes are one part of the three-part repressilator system that governs the biological clock in plants.

Joanna Jean Putterill is a New Zealand molecular botanist. She is currently a full professor at the University of Auckland.

The Late Elongated Hypocotyl gene (LHY), is an oscillating gene found in plants that functions as part of their circadian clock. LHY encodes components of mutually regulatory negative feedback loops with Circadian Clock Associated 1 (CCA1) in which overexpression of either results in dampening of both of their expression. This negative feedback loop affects the rhythmicity of multiple outputs creating a daytime protein complex. LHY was one of the first genes identified in the plant clock, along with TOC1 and CCA1. LHY and CCA1 have similar patterns of expression, which is capable of being induced by light. Single loss-of-function mutants in both genes result in seemingly identical phenotypes, but LHY cannot fully rescue the rhythm when CCA1 is absent, indicating that they may only be partially functionally redundant. Under constant light conditions, CCA1 and LHY double loss-of-function mutants fail to maintain rhythms in clock-controlled RNAs.

Transcription-translation feedback loop (TTFL), is a cellular model for explaining circadian rhythms in behavior and physiology. Widely conserved across species, the TTFL is auto-regulatory, in which transcription of clock genes is regulated by their own protein products.

Dmitri Nusinow is an American chronobiologist who studies plant circadian rhythms. He was born on November 7, 1976 in Inglewood, California. He currently resides in St. Louis, and his research focus includes a combination of molecular, biochemical, genetic, genomic, and proteomic tools to discover the molecular connections between signaling networks, circadian oscillators, and specific outputs. By combining these methods, he hopes to apply the knowledge elucidated from the Arabidopsis model to other plant species.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 Huang H, Nusinow DA (October 2016). "Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock". Trends in Genetics. 32 (10): 674–686. doi:10.1016/j.tig.2016.08.002. PMID   27594171.
  2. 1 2 3 4 5 6 7 Zhao H, Xu D, Tian T, Kong F, Lin K, Gan S, et al. (February 2021). "Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis". Plant Science. 303: 110786. doi:10.1016/j.plantsci.2020.110786. PMID   33487361. S2CID   229414376.
  3. 1 2 Wilkinson EG, Strader LC (October 2020). "A Prion-based Thermosensor in Plants". Molecular Cell. 80 (2): 181–182. doi: 10.1016/j.molcel.2020.09.026 . PMID   33065019. S2CID   223558215.
  4. Zagotta MT, Hicks KA, Jacobs CI, Young JC, Hangarter RP, Meeks-Wagner DR (October 1996). "The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering". The Plant Journal. 10 (4): 691–702. doi: 10.1046/j.1365-313X.1996.10040691.x . PMID   8893545.
  5. 1 2 3 4 5 6 7 Hicks KA, Albertson TM, Wagner DR (June 2001). "EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis". The Plant Cell. 13 (6): 1281–92. doi:10.1105/TPC.010070. PMC   135582 . PMID   11402160.
  6. Li L, McGinnis JP, Si K (June 2018). "Translational Control by Prion-like Proteins". Trends in Cell Biology. 28 (6): 494–505. doi:10.1016/j.tcb.2018.02.002. PMC   5962375 . PMID   29530524.
  7. 1 2 Jung JH, Barbosa AD, Hutin S, Kumita JR, Gao M, Derwort D, et al. (September 2020). "A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis" (PDF). Nature. 585 (7824): 256–260. doi:10.1038/s41586-020-2644-7. PMID   32848244. S2CID   221346218.
  8. Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ (March 2012). "The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops". Molecular Systems Biology. 8: 574. doi:10.1038/msb.2012.6. PMC   3321525 . PMID   22395476.
  9. 1 2 3 4 Hsu PY, Harmer SL (April 2014). "Wheels within wheels: the plant circadian system". Trends in Plant Science. 19 (4): 240–9. doi:10.1016/j.tplants.2013.11.007. PMC   3976767 . PMID   24373845.
  10. Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, et al. (July 2011). "The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth". Nature. 475 (7356): 398–402. doi:10.1038/nature10182. PMC   3155984 . PMID   21753751.
  11. 1 2 Yanovsky MJ, Kay SA (October 2001). "Signaling networks in the plant circadian system". Current Opinion in Plant Biology. 4 (5): 429–35. doi:10.1016/s1369-5266(00)00196-5. PMID   11597501.
  12. 1 2 Susila H, Nasim Z, Ahn JH (October 2018). "Ambient Temperature-Responsive Mechanisms Coordinate Regulation of Flowering Time". International Journal of Molecular Sciences. 19 (10): 3196. doi: 10.3390/ijms19103196 . PMC   6214042 . PMID   30332820.
  13. 1 2 Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR (June 2001). "ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway". The Plant Cell. 13 (6): 1293–304. doi:10.1105/TPC.000475. PMC   135570 . PMID   11402161.
  14. Yu JW, Rubio V, Lee NY, Bai S, Lee SY, Kim SS, et al. (December 2008). "COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability". Molecular Cell. 32 (5): 617–30. doi:10.1016/j.molcel.2008.09.026. PMC   2651194 . PMID   19061637.
  15. Yanovsky MJ, Kay SA (April 2003). "Living by the calendar: how plants know when to flower". Nature Reviews. Molecular Cell Biology. 4 (4): 265–75. doi:10.1038/nrm1077. PMID   12671649. S2CID   140745.
  16. 1 2 3 Zhu X, Chen J, Qiu K, Kuai B (2017). "Phytohormone and Light Regulation of Chlorophyll Degradation". Frontiers in Plant Science. 8: 1911. doi: 10.3389/fpls.2017.01911 . PMC   5681529 . PMID   29163624.
  17. 1 2 Zhang SR, Wang H, Wang Z, Ren Y, Niu L, Liu J, Liu B (December 2017). "Photoperiodism dynamics during the domestication and improvement of soybean". Science China Life Sciences. 60 (12): 1416–1427. doi:10.1007/s11427-016-9154-x. PMID   28942538. S2CID   21329803.
  18. Sun C, Chen D, Fang J, Wang P, Deng X, Chu C (December 2014). "Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways". Protein & Cell. 5 (12): 889–98. doi:10.1007/s13238-014-0068-6. PMC   4259885 . PMID   25103896.
  19. Müller LM, Mombaerts L, Pankin A, Davis SJ, Webb AA, Goncalves J, von Korff M (June 2020). "Differential Effects of Day/Night Cues and the Circadian Clock on the Barley Transcriptome". Plant Physiology. 183 (2): 765–779. doi:10.1104/pp.19.01411. PMC   7271788 . PMID   32229608.
  20. 1 2 Jacott CN, Boden SA (October 2020). "Feeling the heat: developmental and molecular responses of wheat and barley to high ambient temperatures". Journal of Experimental Botany. 71 (19): 5740–5751. doi:10.1093/jxb/eraa326. PMC   7540836 . PMID   32667992.
  21. 1 2 McClung CR (May 2013). "Beyond Arabidopsis: the circadian clock in non-model plant species". Seminars in Cell & Developmental Biology. 24 (5): 430–6. doi:10.1016/j.semcdb.2013.02.007. PMID   23466287.