Erythrocyte fragility

Last updated
Erythrocyte fragility
MeSH D009996

Erythrocyte fragility refers to the propensity of erythrocytes (red blood cells, RBC) to hemolyse (rupture) under stress. It can be thought of as the degree or proportion of hemolysis that occurs when a sample of red blood cells are subjected to stress (typically physical stress, and most commonly osmotic and/or mechanical stress). Depending on the application as well as the kind of fragility involved, the amount of stress applied and/or the significance of the resultant hemolysis may vary.[ citation needed ]

Contents

When multiple levels of stress are applied to a given population/sample of cells, a fragility profile can be obtained by measuring the relative or absolute extent of hemolysis existing at each such level, [1] in addition to finding one or more single-number indexes [2] (either measured directly or interpolated) associated with particular respective levels of hemolysis and/or corresponding stress. Fragility testing can be useful to assess cells' ability (or lack thereof) to withstand sustained or repeated stress. Moreover, it can be used to assess how fragility itself varies under different or changing environmental or stress conditions, during or prior to the inducement of the hemolysis. Low fragility is often termed "stability," though technically stability refers to cells' resistance to both stress-induced lysis and spontaneous auto-lysis.[ citation needed ]

Erythrocyte osmotic fragility

Osmotic fragility (OF) refers to the degree or proportion of hemolysis that occurs when a sample of red blood cells are subjected to osmotic stress by being placed in a hypotonic solution. Osmotic fragility is affected by various factors, including membrane composition and integrity as well as the cells' sizes or surface-area-to-volume ratios. [3] [4] [5]

The osmotic fragility test is common in hematology, and is often performed to aid with diagnosis of diseases associated with RBC membrane abnormalities. Some diseases linked to increased OF include hereditary spherocytosis and hypernatremia, while some linked to decreased OF include chronic liver disease, iron deficiency anemia, thalassemia, hyponatremia, polycythemia vera, hereditary xerocytosis, [6] and sickle cell anemia after splenectomy. [7]

New approaches to testing OF are under development to better facilitate its use in disease diagnosis and screening, such as by utilizing microfluidic devices along with cell counting. [8]

Erythrocyte mechanical fragility

Mechanical fragility (MF) refers to the degree or proportion of hemolysis that occurs when a sample of red blood cells are subjected to mechanical stress, such as (typically) some kind of shear stress. Yet unlike with osmotic fragility, no single approach for testing mechanical fragility has yet gained sufficient acceptance to enable standardization. [9] This has led to some insurance companies not currently covering the test. [10]

Uses of erythrocyte mechanical fragility can include diagnostic testing, [11] calibrations to aid comparisons of hemolysis caused by blood-handling devices, [9] or assessment of sublethal (i.e., non-hemolysing) damage caused to cells from devices that manipulate blood (such as for dialysis [12] or intraoperative autotransfusion [13] ). It can also help in assessing damage of stored RBC product [14] (so-called "storage lesion"), leading to applications in blood transfusion and blood banking.

It's also notable that there can be a qualitative difference between a mechanical fragility test involving a comparatively lower energy stress, such as by agitating one or more beads in the presence of the sample (a common approach [15] ), versus a higher energy stress, such as by applying ultrasound to the sample. [16] The difference is that the lower-energy category of stress can more prominently reflect cell membrane properties, whereas the higher-energy category largely reflects other properties like hemoglobin viscosity and cell size. Viscous or fluidic-mechanical stresses can be of either sort.[ citation needed ]

Mechanical fragility is increased in the cases of sickle cell anemia, thalassemia, hereditary spherocytosis etc. .

Susceptibility to hemolysis from causes other than osmotic or mechanical forces are not as common, but may sometimes be referred to in terms of fragility or stability. For example, photons or radicals can induce hemolysis.Erythrocytes/RBC may also be tested for related membrane properties aside from fragility, including erythrocyte deformability and cell morphology. Morphology can be measured by indexes which characterize shape changes of differences among cells. Deformability testing involves measuring the degree or ease of cells' contortion or shape change under a given level of applied force - or some indirect inference of the like. Other related red blood cell properties can include adhesion and aggregation, which along with deformability are often classed as RBC "flow properties."[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Red blood cell</span> Oxygen-delivering blood cell and the most common type of blood cell

Red blood cells (RBCs), referred to as erythrocytes (from ancient Greek erythros 'red' and kytos 'hollow vessel', with -cyte translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cell and the vertebrate's principal means of delivering oxygen (O2) to the body tissues—via blood flow through the circulatory system. Erythrocytes take up oxygen in the lungs, or in fish the gills, and release it into tissues while squeezing through the body's capillaries.

<span class="mw-page-title-main">Hemolysis</span> Rupturing of red blood cells and release of their contents

Hemolysis or haemolysis, also known by several other names, is the rupturing (lysis) of red blood cells (erythrocytes) and the release of their contents (cytoplasm) into surrounding fluid. Hemolysis may occur in vivo or in vitro.

<span class="mw-page-title-main">Hemoglobinopathy</span> Any of various genetic disorders of blood

Hemoglobinopathy is the medical term for a group of inherited blood disorders involving the hemoglobin, the protein of red blood cells. They are single-gene disorders and, in most cases, they are inherited as autosomal co-dominant traits.

<span class="mw-page-title-main">Anemia</span> Reduced ability of blood to carry oxygen

Anemia or anaemia is a blood disorder in which the blood has a reduced ability to carry oxygen. This can be due to a lower than normal number of red blood cells, a reduction in the amount of hemoglobin available for oxygen transport, or abnormalities in hemoglobin that impair its function.

<span class="mw-page-title-main">Spherocytosis</span> Medical condition

Spherocytosis is the presence of spherocytes in the blood, i.e. erythrocytes that are sphere-shaped rather than bi-concave disk shaped as normal. Spherocytes are found in all hemolytic anemias to some degree. Hereditary spherocytosis and autoimmune hemolytic anemia are characterized by having only spherocytes.

<span class="mw-page-title-main">Hereditary spherocytosis</span> Medical condition

Hereditary spherocytosis (HS) is a congenital hemolytic disorder wherein a genetic mutation coding for a structural membrane protein phenotype causes the red blood cells to be sphere-shaped (spherocytosis), rather than the normal biconcave disk shape. This abnormal shape interferes with the cells' ability to flex during blood circulation, and also makes them more prone to rupture under osmotic stress, mechanical stress, or both. Cells with the dysfunctional proteins are degraded in the spleen, which leads to a shortage of erythrocytes and results in hemolytic anemia.

<span class="mw-page-title-main">Hemolytic anemia</span> Medical condition

Hemolytic anemia or haemolytic anaemia is a form of anemia due to hemolysis, the abnormal breakdown of red blood cells (RBCs), either in the blood vessels or elsewhere in the human body (extravascular). This most commonly occurs within the spleen, but also can occur in the reticuloendothelial system or mechanically. Hemolytic anemia accounts for 5% of all existing anemias. It has numerous possible consequences, ranging from general symptoms to life-threatening systemic effects. The general classification of hemolytic anemia is either intrinsic or extrinsic. Treatment depends on the type and cause of the hemolytic anemia.

<span class="mw-page-title-main">Mean corpuscular hemoglobin concentration</span> Measure of hemoglobin concentration in red blood cells

The mean corpuscular hemoglobin concentration (MCHC) is a measure of the concentration of hemoglobin in a given volume of packed red blood cell.

<span class="mw-page-title-main">Red blood cell distribution width</span> Measure of red blood cell volume variation as part of a standard blood test

Red blood cell distribution width (RDW), as well as various types thereof, is a measure of the range of variation of red blood cell (RBC) volume that is reported as part of a standard complete blood count. Red blood cells have an average volume of 80–100 femtoliters, but individual cell volumes vary even in healthy blood. Certain disorders, however, cause a significantly increased variation in cell size. Higher RDW values indicate greater variation in size. Normal reference range of RDW-CV in human red blood cells is 11.5–15.4%. If anemia is observed, RDW test results are often used together with mean corpuscular volume (MCV) results to determine the possible causes of the anemia. It is mainly used to differentiate an anemia of mixed causes from an anemia of a single cause.

The direct and indirect Coombs tests, also known as antiglobulin test (AGT), are blood tests used in immunohematology. The direct Coombs test detects antibodies that are stuck to the surface of the red blood cells. Since these antibodies sometimes destroy red blood cells they can cause anemia; this test can help clarify the condition. The indirect Coombs test detects antibodies that are floating freely in the blood. These antibodies could act against certain red blood cells; the test can be carried out to diagnose reactions to a blood transfusion.

<span class="mw-page-title-main">Codocyte</span> Type of red blood cell

Codocytes, also known as target cells, are red blood cells that have the appearance of a shooting target with a bullseye. In optical microscopy these cells appear to have a dark center surrounded by a white ring, followed by dark outer (peripheral) second ring containing a band of hemoglobin. However, in electron microscopy they appear very thin and bell shaped. Because of their thinness they are referred to as leptocytes. On routine smear morphology, some people like to make a distinction between leptocytes and codocytes- suggesting that in leptocytes the central spot is not completely detached from the peripheral ring, i.e. the pallor is in a C shape rather than a full ring.

<span class="mw-page-title-main">Hereditary elliptocytosis</span> Medical condition

Hereditary elliptocytosis, also known as ovalocytosis, is an inherited blood disorder in which an abnormally large number of the person's red blood cells are elliptical rather than the typical biconcave disc shape. Such morphologically distinctive erythrocytes are sometimes referred to as elliptocytes or ovalocytes. It is one of many red-cell membrane defects. In its severe forms, this disorder predisposes to haemolytic anaemia. Although pathological in humans, elliptocytosis is normal in camelids.

<span class="mw-page-title-main">Hereditary stomatocytosis</span> Medical condition

Hereditary stomatocytosis describes a number of inherited, mostly autosomal dominant human conditions which affect the red blood cell and create the appearance of a slit-like area of central pallor (stomatocyte) among erythrocytes on peripheral blood smear. The erythrocytes' cell membranes may abnormally 'leak' sodium and/or potassium ions, causing abnormalities in cell volume. Hereditary stomatocytosis should be distinguished from acquired causes of stomatocytosis, including dilantin toxicity and alcoholism, as well as artifact from the process of preparing peripheral blood smears.

<span class="mw-page-title-main">Hereditary pyropoikilocytosis</span> Medical condition

Hereditary pyropoikilocytosis (HPP) is an autosomal recessive form of hemolytic anemia characterized by an abnormal sensitivity of red blood cells to heat and erythrocyte morphology similar to that seen in thermal burns or from prolonged exposure of a healthy patient's blood sample to high ambient temperatures. Patients with HPP tend to experience severe hemolysis and anemia in infancy that gradually improves, evolving toward typical elliptocytosis later in life. However, the hemolysis can lead to rapid sequestration and destruction of red cells. Splenectomy is curative when this occurs.

Autoimmune hemolytic anemia (AIHA) occurs when antibodies directed against the person's own red blood cells (RBCs) cause them to burst (lyse), leading to an insufficient number of oxygen-carrying red blood cells in the circulation. The lifetime of the RBCs is reduced from the normal 100–120 days to just a few days in serious cases. The intracellular components of the RBCs are released into the circulating blood and into tissues, leading to some of the characteristic symptoms of this condition. The antibodies are usually directed against high-incidence antigens, therefore they also commonly act on allogenic RBCs. AIHA is a relatively rare condition, with an incidence of 5–10 cases per 1 million persons per year in the warm-antibody type and 0.45 to 1.9 cases per 1 million persons per year in the cold antibody type. Autoimmune hemolysis might be a precursor of later onset systemic lupus erythematosus.

Reticulocytopenia is the medical term for an abnormal decrease in circulating red blood cell precursors (reticulocytes) that can lead to anemia due to resulting low red blood cell (erythrocyte) production. Reticulocytopenia may be an isolated finding or it may not be associated with abnormalities in other hematopoietic cell lineages such as those that produce white blood cells (leukocytes) or platelets (thrombocytes), a decrease in all three of these lineages is referred to as pancytopenia.

Normocytic anemia is a type of anemia and is a common issue that occurs for men and women typically over 85 years old. Its prevalence increases with age, reaching 44 percent in men older than 85 years. The most common type of normocytic anemia is anemia of chronic disease.

Congenital hemolytic anemia (CHA) is a diverse group of rare hereditary conditions marked by decreased life expectancy and premature removal of erythrocytes from blood flow. Defects in erythrocyte membrane proteins and red cell enzyme metabolism, as well as changes at the level of erythrocyte precursors, lead to impaired bone marrow erythropoiesis. CAH is distinguished by variable anemia, chronic extravascular hemolysis, decreased erythrocyte life span, splenomegaly, jaundice, biliary lithiasis, and iron overload. Immune-mediated mechanisms may play a role in the pathogenesis of these uncommon diseases, despite the paucity of data regarding the immune system's involvement in CHAs.

Erythrocyte deformability refers to the ability of erythrocytes to change shape under a given level of applied stress, without hemolysing (rupturing). This is an important property because erythrocytes must change their shape extensively under the influence of mechanical forces in fluid flow or while passing through microcirculation. The extent and geometry of this shape change can be affected by the mechanical properties of the erythrocytes, the magnitude of the applied forces, and the orientation of erythrocytes with the applied forces. Deformability is an intrinsic cellular property of erythrocytes determined by geometric and material properties of the cell membrane, although as with many measurable properties the ambient conditions may also be relevant factors in any given measurement. No other cells of mammalian organisms have deformability comparable with erythrocytes; furthermore, non-mammalian erythrocytes are not deformable to an extent comparable with mammalian erythrocytes. In human RBC there are structural support that aids resilience in RBC which include the cytoskeleton- actin and spectrin that are held together by ankyrin.

Mechanical hemolytic anemia is a form of hemolytic anemia due to mechanically induced damage to red blood cells. Red blood cells, while flexible, may in some circumstances succumb to physical shear and compression. This may result in hemoglobinuria. The damage is induced through repetitive mechanical motions such as prolonged marching and marathon running. Mechanical damage can also be induced through the chronic condition microangiopathic hemolytic anemia or due to prosthetic heart valves.

References

  1. Greenaway, Chris (January 31, 2012). "Osmotic fragility test". spherocytosis.info. Archived from the original on June 3, 2012.
  2. DE KRETSER AJ, WALDRON HA (1963). "The Mechanical Fragility of the Red Cell in Patients with Lead Poisoning". Br J Ind Med. 20 (4): 316–9. doi:10.1136/oem.20.4.316. PMC   1039189 . PMID   14072624.
  3. Rodak, Bernadette F.; et al. (2007). Hematology: clinical principles and applications. Elsevier Health Sciences. p. 291. ISBN   978-1-4160-3006-5.
  4. Fischbach, Frances Talaska; Dunning, Marshall Barnett (2008). A manual of laboratory and diagnostic tests (8th ed.). Lippincott Williams & Wilkins. p. 116. ISBN   978-0-7817-7194-8.
  5. Greer, John P.; et al., eds. (2008). Wintrobe's clinical hematology. Lippincott Williams & Wilkins. p. 805. ISBN   978-0-7817-6507-7.
  6. "How is hereditary spherocytosis (HS) differentiated from hereditary xerocytosis (HX)?". Archived from the original on 2024-07-06. Retrieved 2024-07-06.
  7. "Osmotic Fragility is a test for hereditary spherocytosis - ClinLab Navigator". clinlabnavigator.com. Archived from the original on 2013-01-07. Retrieved 2013-03-28.
  8. Chen, Hongda; Ye, Datian; Wu, Hongkai; Peng, Fei; Li, Jing; Su, Jing; Li, Lei (2012-07-30). "A microfluidic platform for osmotic fragility test of red blood cells". RSC Advances. 2 (18): 7161–7165. Bibcode:2012RSCAd...2.7161L. doi:10.1039/C2RA20051A.
  9. 1 2 Gu, Lei; Smith, William A.; Chatzimavroudis, George P. (2005). "Mechanical Fragility Calibration of Red Blood Cells". ASAIO Journal. 51 (3). Ovid Technologies (Wolters Kluwer Health): 194–201. doi:10.1097/01.mat.0000161940.30190.6d. ISSN   1058-2916.
  10. "Obsolete and Unreliable Tests and Procedures". aetna.com. Archived from the original on 2014-01-02. Retrieved 2013-03-28.
  11. "2021 Clinical Diagnostic Laboratory Fee Schedule" (PDF). Archived (PDF) from the original on 26 February 2024. Retrieved 4 July 2024.
  12. Kameneva, Marina V.; Marad, Paul F.; Brugger, James M.; Repko, Brandon M.; Wang, John H.; Moran, John; Borovetz, Harvey S. (2002). "In Vitro Evaluation of Hemolysis and Sublethal Blood Trauma in a Novel Subcutaneous Vascular Access System for Hemodialysis". ASAIO Journal. 48 (1). Ovid Technologies (Wolters Kluwer Health): 34–38. doi:10.1097/00002480-200201000-00008. ISSN   1058-2916.
  13. Yazer M. H.; Waters J. H.; Elkin K. R.; Rohrbaugh M. E.; Kameneva M. V. (2008). "A comparison of hemolysis and red cell mechanical fragility in blood collected with different cell salvage suction devices". Transfusion. 48 (6): 1188–1191. doi:10.1111/j.1537-2995.2008.01670.x. PMID   18346016. S2CID   28610759.
  14. Raval, J. S.; Waters, J. H.; Seltsam, A.; Scharberg, E. A.; Richter, E.; Daly, A. R.; Kameneva, M. V.; Yazer, M. H. (2010-07-27). "The use of the mechanical fragility test in evaluating sublethal RBC injury during storage". Vox Sanguinis. 99 (4). Wiley: 325–331. doi:10.1111/j.1423-0410.2010.01365.x. ISSN   0042-9007.
  15. Baskurt, O.K.; Hardeman, M.R.; Rampling, M.W. (2007). Handbook of Hemorheology and Hemodynamics. Biomedical and Health Research. IOS Press. ISBN   978-1-60750-263-0. Archived from the original on 2024-07-06. Retrieved 2024-07-04.
  16. Tarssanen, L. (1976). "Hemolysis by ultrasound. A comparative study of the osmotic and ultrasonic fragility tests". Scandinavian Journal of Haematology. Supplementum. 29: 1–59. ISSN   0080-6722. PMID   1064894.