Familial thoracic aortic aneurysm and aortic dissection

Last updated
Familial thoracic aortic aneurysm and aortic dissection
Autosomal dominant inheritance, pedigree example.png
This disorder is inherited in an autosomal dominant fashion.
Specialty Medical genetics, Cardiology
Symptoms high frequency of thoracic aortic aneurysms and aortic dissections in the family (including oneself)
Complications Aortic rupture
Usual onsetAdolescence to early adulthood
DurationLife-long
Causes Genetic mutation
Prognosis Poor
FrequencyNot known

Familial thoracic aortic aneurysm and aortic dissection is a very rare vascular genetic disorder, it's characterized by recurrent thoracic aortic aneurysms and aortic dissections within a family, these mentioned complications affect one or more aortic segments without any other disease being associated with them. People with this disorder have a higher chance of having a potentially fatal aortic rupture. [1] [2] This disorder is the cause of 20% of thoracic aortic aneurysms [3] [4]

Some families affected by this condition have shown mild versions of some symptoms that are associated with Marfan syndrome and Loeys-Dietz syndrome, these signs include tall stature, joint hypermobility, cutaneous stretch marks, and either pectus excavatum or pectus carinatum. Less common symptoms in other affected families include scoliosis, congenital heart defects, inguinal hernia, and/or livedo reticularis. [5]

Etiology

This disorder is caused by mutations in one or more of the following genes: [6] [7] [8]

This disorder is inherited in an autosomal dominant manner, meaning only one copy of a mutated gene is needed in order for the disease to develop. [9]

Related Research Articles

<span class="mw-page-title-main">Marfan syndrome</span> Genetic disorder involving connective tissue

Marfan syndrome (MFS) is a multi-systemic genetic disorder that affects the connective tissue. Those with the condition tend to be tall and thin, with long arms, legs, fingers, and toes. They also typically have exceptionally flexible joints and abnormally curved spines. The most serious complications involve the heart and aorta, with an increased risk of mitral valve prolapse and aortic aneurysm. The lungs, eyes, bones, and the covering of the spinal cord are also commonly affected. The severity of the symptoms is variable.

<span class="mw-page-title-main">Joubert syndrome</span> Medical condition

Joubert syndrome is a rare autosomal recessive genetic disorder that affects the cerebellum, an area of the brain that controls balance and coordination.

<span class="mw-page-title-main">Ehlers–Danlos syndrome</span> Group of genetic connective tissues disorders

Ehlers–Danlos syndromes (EDS) are a group of 13 genetic connective-tissue disorders. Symptoms often include loose joints, joint pain, stretchy velvety skin, and abnormal scar formation. These may be noticed at birth or in early childhood. Complications may include aortic dissection, joint dislocations, scoliosis, chronic pain, or early osteoarthritis. The current classification was last updated in 2017, when a number of rarer forms of EDS were added.

<span class="mw-page-title-main">Aortic dissection</span> Injury to the innermost layer of the aorta

Aortic dissection (AD) occurs when an injury to the innermost layer of the aorta allows blood to flow between the layers of the aortic wall, forcing the layers apart. In most cases, this is associated with a sudden onset of agonizing chest or back pain, often described as "tearing" in character. Vomiting, sweating, and lightheadedness may also occur. Damage to other organs may result from the decreased blood supply, such as stroke, lower extremity ischemia, or mesenteric ischemia. Aortic dissection can quickly lead to death from insufficient blood flow to the heart or complete rupture of the aorta.

<span class="mw-page-title-main">Occipital horn syndrome</span> Medical condition

Occipital horn syndrome (OHS), formerly considered a variant of Ehlers–Danlos syndrome, is an X-linked recessive mitochondrial and connective tissue disorder. It is caused by a deficiency in the transport of the essential mineral copper, associated with mutations in the ATP7A gene.

<span class="mw-page-title-main">Chest pain</span> Discomfort or pain in the chest as a medical symptom

Chest pain is pain or discomfort in the chest, typically the front of the chest. It may be described as sharp, dull, pressure, heaviness or squeezing. Associated symptoms may include pain in the shoulder, arm, upper abdomen, or jaw, along with nausea, sweating, or shortness of breath. It can be divided into heart-related and non-heart-related pain. Pain due to insufficient blood flow to the heart is also called angina pectoris. Those with diabetes or the elderly may have less clear symptoms.

<span class="mw-page-title-main">Aortic aneurysm</span> Excessive enlargement of the human aorta

An aortic aneurysm is an enlargement (dilatation) of the aorta to greater than 1.5 times normal size. Typically, there are no symptoms except when the aneurysm dissects or ruptures, which causes sudden, severe pain in the abdomen and lower back.

<span class="mw-page-title-main">Thoracic aortic aneurysm</span> Medical condition

A thoracic aortic aneurysm is an aortic aneurysm that presents primarily in the thorax.

Malouf syndrome is a congenital disorder that causes one or more of the following symptoms: intellectual disability, ovarian dysgenesis, congestive cardiomyopathy, broad nasal base, blepharoptosis, and bone abnormalities, and occasionally marfanoid habitus.

<span class="mw-page-title-main">Noonan syndrome with multiple lentigines</span> Rare autosomal dominant multi-system genetic condition

Noonan syndrome with multiple lentigines (NSML) which is part of a group called Ras/MAPK pathway syndromes, is a rare autosomal dominant, multisystem disease caused by a mutation in the protein tyrosine phosphatase, non-receptor type 11 gene (PTPN11). The disease is a complex of features, mostly involving the skin, skeletal and cardiovascular systems, which may or may not be present in all patients. The nature of how the mutation causes each of the condition's symptoms is not well known; however, research is ongoing. It is a RASopathy.

<span class="mw-page-title-main">Loeys–Dietz syndrome</span> Medical condition

Loeys–Dietz syndrome (LDS) is an autosomal dominant genetic connective tissue disorder. It has features similar to Marfan syndrome and Ehlers–Danlos syndrome. The disorder is marked by aneurysms in the aorta, often in children, and the aorta may also undergo sudden dissection in the weakened layers of the wall of the aorta. Aneurysms and dissections also can occur in arteries other than the aorta. Because aneurysms in children tend to rupture early, children are at greater risk for dying if the syndrome is not identified. Surgery to repair aortic aneurysms is essential for treatment.

<span class="mw-page-title-main">Collagen, type III, alpha 1</span>

Type III Collagen is a homotrimer, or a protein composed of three identical peptide chains (monomers), each called an alpha 1 chain of type III collagen. Formally, the monomers are called collagen type III, alpha-1 chain and in humans are encoded by the COL3A1 gene. Type III collagen is one of the fibrillar collagens whose proteins have a long, inflexible, triple-helical domain.

<span class="mw-page-title-main">Syphilitic aortitis</span> Inflammation of the aorta

Syphilitic aortitis is inflammation of the aorta associated with the tertiary stage of syphilis infection. SA begins as inflammation of the outermost layer of the blood vessel, including the blood vessels that supply the aorta itself with blood, the vasa vasorum. As SA worsens, the vasa vasorum undergo hyperplastic thickening of their walls thereby restricting blood flow and causing ischemia of the outer two-thirds of the aortic wall. Starved for oxygen and nutrients, elastic fibers become patchy and smooth muscle cells die. If the disease progresses, syphilitic aortitis leads to an aortic aneurysm. Overall, tertiary syphilis is a rare cause of aortic aneurysms. Syphilitic aortitis has become rare in the developed world with the advent of penicillin treatments after World War II.

<span class="mw-page-title-main">Annuloaortic ectasia</span> Medical condition

Annuloaortic ectasia is characterized by pure aortic valve regurgitation and aneurysmal dilatation of the ascending aorta. Men are more likely than women to develop idiopathic annuloaortic ectasia, which usually manifests in the fourth or sixth decades of life. Additional factors that contribute to this condition include osteogenesis imperfecta, inflammatory aortic diseases, intrinsic valve disease, Loeys-Dietz syndrome, Marfan syndrome, and operated congenital heart disease.

<span class="mw-page-title-main">Arterial tortuosity syndrome</span> Medical condition

Arterial tortuosity syndrome is an extremely rare congenital connective tissue condition disorder characterized by tortuosity, elongation, stenosis, or aneurysms in major and medium-size arteries including the aorta.

Congenital contractural arachnodactyly (CCA), also known as Beals–Hecht syndrome, is a rare autosomal dominant congenital connective tissue disorder. As with Marfan syndrome, people with CCA typically have an arm span that is greater than their height and very long fingers and toes. However, Beals and Hecht discovered in 1972 that, unlike Marfan's, CCA is caused by mutations to the fibrillin-2 (FBN2) gene rather than the fibrillin-1 (FBN1) gene.

<span class="mw-page-title-main">Fibrillin-1</span> Protein found in humans

Fibrillin-1 is a protein that in humans is encoded by the FBN1 gene, located on chromosome 15. It is a large, extracellular matrix glycoprotein that serves as a structural component of 10–12 nm calcium-binding microfibrils. These microfibrils provide force bearing structural support in elastic and nonelastic connective tissue throughout the body. Mutations altering the protein can result in a variety of phenotypic effects differing widely in their severity, including fetal death, developmental problems, Marfan syndrome or in some cases Weill-Marchesani syndrome.

<span class="mw-page-title-main">Myosin-11</span> Protein-coding gene in the species Homo sapiens

Myosin-11 is a protein that in humans is encoded by the MYH11 gene.

<span class="mw-page-title-main">Familial aortic dissection</span> Medical condition

Familial aortic dissection or FAD refers to the splitting of the wall of the aorta in either the arch, ascending or descending portions. FAD is thought to be passed down as an autosomal dominant disease and once inherited will result in dissection of the aorta, and dissecting aneurysm of the aorta, or rarely aortic or arterial dilation at a young age. Dissection refers to the actual tearing open of the aorta. However, the exact gene(s) involved has not yet been identified. It can occur in the absence of clinical features of Marfan syndrome and of systemic hypertension. Over time this weakness, along with systolic pressure, results in a tear in the aortic intima layer thus allowing blood to enter between the layers of tissue and cause further tearing. Eventually complete rupture of the aorta occurs and the pleural cavity fills with blood. Warning signs include chest pain, ischemia, and hemorrhaging in the chest cavity. This condition, unless found and treated early, usually results in death. Immediate surgery is the best treatment in most cases. FAD is not to be confused with PAU and IMH, both of which present in ways similar to that of familial aortic dissection.

Multisystemic smooth muscle dysfunction syndrome (MSMDS) is a genetic disorder caused by R179 missense mutations in the ACTA2 gene. Initially described as a case report in 1999, it was characterized in 2010 as a syndrome of congenital mydriasis, patent ductus arteriosus, and aneurysmal arterial disease—in particular aortic and thoracic aneurysms. The disorder has variable penetrance, ranging from severely symptomatic and fatal in early neonatal period to a more benign and manageable course with surgical intervention.

References

  1. "Orphanet: Familial thoracic aortic aneurysm and aortic dissection".
  2. Omar, Sabry; Moore, Tyler; Payne, Drew; Momeni, Parastoo; Mulkey, Zachary; Paone, Ralph; Nugent, Kenneth (2014). "Familial Thoracic Aortic Aneurysm with Dissection Presenting as Flash Pulmonary Edema in a 26-Year-Old Man". Case Reports in Medicine. 2014: 1–4. doi: 10.1155/2014/842872 . PMC   4109323 . PMID   25104961.
  3. "Thoracic Aortic Aneurysm & Aortic Dissection".
  4. Guo, Dong-Chuan; Regalado, Ellen S.; Minn, Charles; Tran-Fadulu, Van; Coney, Joshua; Cao, Jiumei; Wang, Min; Yu, Robert K.; Estrera, Anthony L.; Safi, Hazim J.; Shete, Sanjay S.; Milewicz, Dianna M. (2011). "Familial Thoracic Aortic Aneurysms and Dissections". Circulation: Cardiovascular Genetics. 4 (1): 36–42. doi:10.1161/circgenetics.110.958066. PMC   3739448 . PMID   21163914.
  5. "Familial thoracic aortic aneurysm and dissection: MedlinePlus Genetics".
  6. "Familial thoracic aortic aneurysm and aortic dissection - About the Disease - Genetic and Rare Diseases Information Center".
  7. Keramati, Ali R.; Sadeghpour, Anita; Farahani, Maryam M.; Chandok, Gurangad; Mani, Arya (2010). "The non-syndromic familial thoracic aortic aneurysms and dissections maps to 15q21 locus". BMC Medical Genetics. 11: 143. doi: 10.1186/1471-2350-11-143 . PMC   2958900 . PMID   20937124.
  8. "Familial Thoracic Aortic Aneurysm and Dissection Syndrome (Familial TAAD) - Stanford Children's Health".
  9. "Familial Thoracic Aortic Aneurysm Dissection - UCLA Cardiovascular Genetics Clinic, Los Angeles, CA".