Fatty acid-binding protein

Last updated
Structure of one of the FABP proteins (FABP3) known as Heart-type fatty acid binding protein. Protein FABP3 PDB 1g5w.png
Structure of one of the FABP proteins (FABP3) known as Heart-type fatty acid binding protein.

The fatty-acid-binding proteins (FABPs) are a family of transport proteins for fatty acids and other lipophilic substances such as eicosanoids and retinoids. [1] [2] These proteins are thought to facilitate the transfer of fatty acids between extra- and intracellular membranes. [3] Some family members are also believed to transport lipophilic molecules from outer cell membrane to certain intracellular receptors such as PPAR. [4] The FABPs are intracellular carriers that “solubilize” the endocannabinoid anandamide (AEA), transporting AEA to the breakdown by FAAH, and compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD) are also discovered to bind human FABPs (1, 3, 5, and 7) that function as intracellular carriers, as THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. [5] Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. [6] Levels of fatty-acid-binding protein have been shown to decline with ageing in the mouse brain, possibly contributing to age-associated decline in synaptic activity. [7]

Contents

Fatty Acid Binding Proteins (FABPs) represent a family of proteins that play a pivotal role in cellular lipid metabolism. These proteins act as intracellular carriers, facilitating the transport and utilization of fatty acids within cells. With their diverse tissue-specific distribution and involvement in various cellular processes, FABPs contribute significantly to energy homeostasis, lipid metabolism, and even cellular signaling. Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. [2] This comprehensive exploration aims to delve into the structure, function, types, and implications of FABPs in health and disease.

Structure

FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied. [2]

Function

Dictated by the characteristic structure, the main function of the FABPs is to bind fatty acids, as well as the intake, transportation and consumption, despite their different selectivity, affinity, and binding mechanism. [8] They enhance the solubility of hydrophobic fatty acids, allowing their efficient transport within the aqueous cytoplasm. FABPs also participate in the uptake of fatty acids from the extracellular environment and their subsequent delivery to specific cellular compartments, such as the nucleus, mitochondria, or endoplasmic reticulum. Research emerging in the last decade has suggested that FABPs have tissue-specific functions that reflect tissue-specific aspects of lipid and fatty acid metabolism. Proposed roles for FABPs include assimilation of dietary lipids in the intestine, targeting of liver lipids to catabolic and anabolic pathways, regulation of lipid storage and lipid-mediated gene expression in adipose tissue and macrophages, fatty acid targeting to β-oxidation pathways in muscle, and maintenance of phospholipid membranes in neural tissues. [8]

FABPs facilitate the transport of fatty acids by forming a complex with them. This complex shields the hydrophobic fatty acids from the surrounding aqueous environment, enabling their transit through the cytoplasm. Different types of FABPs exhibit tissue-specific expression, ensuring the efficient transport of fatty acids to locations where they are needed most for various cellular processes. Studies have reported that the intracellular trafficking of fatty acids is a complicated and dynamic process that directly or indirectly influences multiple functions of the cell and especially regulates important biochemical processes in normal cells, [9] including gene expression modulation, cell development, metabolism, and inflammatory response through enzymatic and transcriptional networks. [10]

Cellular signaling

Beyond their role in fatty acid transport, FABPs also participate in cellular signaling pathways. By transporting fatty acids to the nucleus, FABPs can modulate the activity of nuclear receptors involved in transcriptional regulation. This interaction can influence gene expression, contributing to the overall regulation of cellular processes, including those related to lipid metabolism.

Role in metabolism

FABPs are integral to lipid metabolism, participating in various processes that contribute to energy homeostasis. These include fatty acid uptake, storage, and oxidation. In adipocytes, A-FABP is involved in the storage of fatty acids as triglycerides, while in the liver, L-FABP contributes to the regulation of lipid metabolism and cholesterol homeostasis. Metabolic syndromes such as obesity, high uric acid, high blood fat, hypertension, type II diabetes, and atherosclerosis, have received increasing attention due to the great changes that have occurred in eating habits and the general lifestyle. Accumulating evidence shows that the level of FABP5 may be closely associated with the pathogenesis of chronic metabolic diseases through its expression in adipocytes and macrophages. [11]

Types

Several distinct types of FABPs have been identified, each exhibiting a tissue-specific distribution. Some prominent examples include:

Each type of FABP has a specific role in the metabolism and utilization of fatty acids within its respective tissue, highlighting the functional diversity of this protein family.

Clinical significance

Dysregulation of FABPs has been implicated in various metabolic disorders, providing insights into potential therapeutic targets. In obesity, for instance, there is often an altered expression of FABPs in adipose tissue, contributing to abnormal lipid metabolism. It has recently been suggested that macrophage accumulation in adipose tissue is a feature of adipose tissue inflammatory responses triggered by obesity and hence may contribute to the metabolic consequences such as insulin resistance. [12] In diabetes, FABPs may influence insulin sensitivity and glucose metabolism. Additionally, in cardiovascular diseases, the dysregulation of FABPs in the heart and blood vessels may impact fatty acid utilization and contribute to pathological conditions.

Understanding the specific roles of FABPs in disease states is an active area of research, with potential implications for the development of targeted therapies. Modulating FABP activity or expression could offer new avenues for intervention in conditions associated with aberrant lipid metabolism. The creation of pharmacological agents to modify FABP function may therefore provide tissue-specific or cell-type-specific control of lipid signalling pathways, inflammatory responses and metabolic regulation, thus offering a new class of multi-indication therapeutic agents. [13]

Medical applications

Fatty Acid Binding Proteins (FABPs) have shown significant promise in various medical applications due to their role in cellular lipid metabolism and their involvement in several physiological processes. Key medical applications of FABPs include:

Biomarkers for disease diagnosis and prognosis

Cardiovascular Diseases: Elevated levels of FABPs, particularly heart-type FABP (H-FABP), in blood plasma have been associated with acute myocardial infarction. Measurement of FABPs can aid in the early diagnosis and prognosis of cardiovascular events. Liver Diseases: Liver-type FABP (L-FABP) has been studied as a potential biomarker for liver diseases such as non-alcoholic fatty liver disease (NAFLD) and liver cirrhosis. Monitoring L-FABP levels can provide insights into liver function and pathology.

Monitoring and predicting metabolic disorders

Obesity and Diabetes: FABPs, especially adipocyte FABP (A-FABP), are linked to obesity and insulin resistance. Monitoring FABP levels can provide information about the metabolic status of individuals, and targeting FABPs may offer therapeutic strategies for managing obesity-related complications. Type 2 Diabetes: FABPs are implicated in insulin resistance. Studying their expression and function can contribute to a better understanding of the mechanisms underlying type 2 diabetes, potentially leading to the development of targeted therapies.

Drug development and therapeutics

Target for Drug Intervention: FABPs are considered potential targets for drug development. Modulating FABP activity could be a strategy to regulate lipid metabolism and address conditions like atherosclerosis, metabolic syndrome, and other disorders associated with abnormal fatty acid handling. Anti-Inflammatory Therapies: FABPs are involved in inflammatory responses, and targeting them could be a therapeutic approach for inflammatory conditions. For example, inhibition of FABPs might attenuate inflammation associated with certain diseases.

Neurological disorders

Alzheimer's Disease: FABPs, particularly FABP7, have been implicated in neurodegenerative diseases such as Alzheimer's. Understanding their role in brain lipid metabolism may provide insights into disease mechanisms and potential therapeutic targets. Neuroprotection: Some studies suggest that FABPs, especially brain-type FABP (B-FABP), may play a neuroprotective role. Modulating their expression or activity could be explored as a strategy for neuroprotection in conditions like stroke.

Cancer research

Prognostic Markers: Altered expression of certain FABPs has been observed in various cancers. They may serve as prognostic markers, and understanding their role in cancer cell metabolism could open avenues for targeted therapies. Drug Delivery: FABPs have been explored for their potential in targeted drug delivery to cancer cells. Conjugating therapeutic agents with molecules that bind to FABPs may enhance drug delivery to cancer cells expressing these proteins.

Inflammatory bowel disease (IBD)

Biomarkers for IBD: FABPs, including intestinal FABP (I-FABP), have been investigated as potential biomarkers for inflammatory bowel diseases. Elevated levels in serum may indicate intestinal mucosal damage.

Wound Healing and Tissue Repair

Regeneration and Repair: FABPs, such as epidermal FABP (E-FABP), are expressed in skin cells and may play a role in skin regeneration and wound healing. Understanding their functions could contribute to strategies for enhancing tissue repair.

Family members

Members of this family include:

Protein nameGeneTissue distributionComment
FABP 1 FABP1 liver
FABP 2 FABP2 intestinal
FABP 3 FABP3 muscle and heartmammary-derived growth inhibitor
FABP 4 FABP4 adipocyte
FABP 5 FABP5 epidermalpsoriasis-associated
FABP 6 FABP6 ilealgastrotropin
FABP 7 FABP7 brain
FABP 8 PMP2 peripheral nervous systemperipheral myelin protein 2
FABP 9 FABP9
FABP 11fabp11restricted to fishes
FABP 12 FABP12 presence shown in human retinoblastoma cell lines, rodent retina and testis. [14]

Pseudogenes

PseudogeneComment
FABP3P2
FABP5P1
FABP5P2
FABP5P3
FABP5P4
FABP5P5
FABP5P6
FABP5P7
FABP5P8
FABP5P9
FABP5P10
FABP5P11
FABP5P12
FABP5P13
FABP5P14
FABP5P15
FABP7P1
FABP7P2
FABP12P1

Related Research Articles

<span class="mw-page-title-main">Lipolysis</span> Metabolism involving breakdown of lipids

Lipolysis is the metabolic pathway through which lipid triglycerides are hydrolyzed into a glycerol and free fatty acids. It is used to mobilize stored energy during fasting or exercise, and usually occurs in fat adipocytes. The most important regulatory hormone in lipolysis is insulin; lipolysis can only occur when insulin action falls to low levels, as occurs during fasting. Other hormones that affect lipolysis include leptin, glucagon, epinephrine, norepinephrine, growth hormone, atrial natriuretic peptide, brain natriuretic peptide, and cortisol.

<span class="mw-page-title-main">Adipose tissue</span> Loose connective tissue composed mostly by adipocytes

Adipose tissue is a loose connective tissue composed mostly of adipocytes. It also contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular endothelial cells and a variety of immune cells such as adipose tissue macrophages. Its main role is to store energy in the form of lipids, although it also cushions and insulates the body.

<span class="mw-page-title-main">Adipocyte</span> Cells that primarily compose adipose tissue, specialized in storing energy as fat

Adipocytes, also known as lipocytes and fat cells, are the cells that primarily compose adipose tissue, specialized in storing energy as fat. Adipocytes are derived from mesenchymal stem cells which give rise to adipocytes through adipogenesis. In cell culture, adipocyte progenitors can also form osteoblasts, myocytes and other cell types.

<span class="mw-page-title-main">Adiponectin</span> Mammalian protein found in Homo sapiens

Adiponectin is a protein hormone and adipokine, which is involved in regulating glucose levels and fatty acid breakdown. In humans, it is encoded by the ADIPOQ gene and is produced primarily in adipose tissue, but also in muscle and even in the brain.

<span class="mw-page-title-main">Perilipin-1</span> Protein in humans

Perilipin, also known as lipid droplet-associated protein, perilipin 1, or PLIN, is a protein that, in humans, is encoded by the PLIN gene. The perilipins are a family of proteins that associate with the surface of lipid droplets. Phosphorylation of perilipin is essential for the mobilization of fats in adipose tissue.

In chemistry, de novo synthesis is the synthesis of complex molecules from simple molecules such as sugars or amino acids, as opposed to recycling after partial degradation. For example, nucleotides are not needed in the diet as they can be constructed from small precursor molecules such as formate and aspartate. Methionine, on the other hand, is needed in the diet because while it can be degraded to and then regenerated from homocysteine, it cannot be synthesized de novo.

<span class="mw-page-title-main">Hormone-sensitive lipase</span> Enzyme

Hormone-sensitive lipase (EC 3.1.1.79, HSL), also previously known as cholesteryl ester hydrolase (CEH), sometimes referred to as triacylglycerol lipase, is an enzyme that, in humans, is encoded by the LIPE gene, and catalyzes the following reaction:

<span class="mw-page-title-main">White adipose tissue</span> Fatty tissue composed of white adipocytes

White adipose tissue or white fat is one of the two types of adipose tissue found in mammals. The other kind is brown adipose tissue. White adipose tissue is composed of monolocular adipocytes.

<span class="mw-page-title-main">FABP1</span> Protein-coding gene in the species Homo sapiens

FABP1 is a human gene coding for the protein product FABP1. It is also frequently known as liver-type fatty acid-binding protein (LFABP).

<span class="mw-page-title-main">Perilipin-2</span> Protein-coding gene in the species Homo sapiens

Adipose differentiation-related protein, also known as perilipin 2, ADRP or adipophilin, is a protein which belongs to the perilipin (PAT) family of cytoplasmic lipid droplet (CLD)–binding proteins. In humans it is encoded by the ADFP gene. This protein surrounds the lipid droplet along with phospholipids and is involved in assisting the storage of neutral lipids within the lipid droplets.

<span class="mw-page-title-main">Adipose triglyceride lipase</span> Mammalian protein found in Homo sapiens

Adipose triglyceride lipase, also known as patatin-like phospholipase domain-containing protein 2 and ATGL, is an enzyme that in humans is encoded by the PNPLA2 gene. ATGL catalyses the first reaction of lipolysis, where triacylglycerols are hydrolysed to diacylglycerols.

<span class="mw-page-title-main">REPIN1</span> Protein-coding gene in the species Homo sapiens

Replication initiator 1 is a protein that in humans is encoded by the REPIN1 gene. The protein helps enable RNA binding activity as a replication initiation-region protein. The make up of REPIN 1 include three zinc finger hand clusters that organize polydactyl zinc finger proteins containing 15 zinc finger DNA- binding motifs. It has also been predicted to help in regulation of transcription via RNA polymerase II with it being located in the nucleoplasm. Expression of this protein has been seen in the colon, spleen, kidney, and 23 other tissues within the human body throughout.

<span class="mw-page-title-main">Fibroblast growth factor 21</span>

Fibroblast growth factor 21 is a protein that in mammals is encoded by the FGF21 gene. The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family and specifically a member of the endocrine subfamily which includes FGF23 and FGF15/19. FGF21 is the primary endogenous agonist of the FGF21 receptor, which is composed of the co-receptors FGF receptor 1 and β-Klotho.

Lipid droplets, also referred to as lipid bodies, oil bodies or adiposomes, are lipid-rich cellular organelles that regulate the storage and hydrolysis of neutral lipids and are found largely in the adipose tissue. They also serve as a reservoir for cholesterol and acyl-glycerols for membrane formation and maintenance. Lipid droplets are found in all eukaryotic organisms and store a large portion of lipids in mammalian adipocytes. Initially, these lipid droplets were considered to merely serve as fat depots, but since the discovery in the 1990s of proteins in the lipid droplet coat that regulate lipid droplet dynamics and lipid metabolism, lipid droplets are seen as highly dynamic organelles that play a very important role in the regulation of intracellular lipid storage and lipid metabolism. The role of lipid droplets outside of lipid and cholesterol storage has recently begun to be elucidated and includes a close association to inflammatory responses through the synthesis and metabolism of eicosanoids and to metabolic disorders such as obesity, cancer, and atherosclerosis. In non-adipocytes, lipid droplets are known to play a role in protection from lipotoxicity by storage of fatty acids in the form of neutral triacylglycerol, which consists of three fatty acids bound to glycerol. Alternatively, fatty acids can be converted to lipid intermediates like diacylglycerol (DAG), ceramides and fatty acyl-CoAs. These lipid intermediates can impair insulin signaling, which is referred to as lipid-induced insulin resistance and lipotoxicity. Lipid droplets also serve as platforms for protein binding and degradation. Finally, lipid droplets are known to be exploited by pathogens such as the hepatitis C virus, the dengue virus and Chlamydia trachomatis among others.

<span class="mw-page-title-main">Lipotoxicity</span> Metabolic syndrome

Lipotoxicity is a metabolic syndrome that results from the accumulation of lipid intermediates in non-adipose tissue, leading to cellular dysfunction and death. The tissues normally affected include the kidneys, liver, heart and skeletal muscle. Lipotoxicity is believed to have a role in heart failure, obesity, and diabetes, and is estimated to affect approximately 25% of the adult American population.

Adipose tissue macrophages (ATMs) comprise tissue resident macrophages present in adipose tissue. Adipose tissue apart from adipocytes is composed of the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular endothelial cells and variety of immune cells. The latter ones are composed of mast cells, eosinophils, B cells, T cells and macrophages. The number of macrophages within adipose tissue differs depending on the metabolic status. As discovered by Rudolph Leibel and Anthony Ferrante et al. in 2003 at Columbia University, the percentage of macrophages within adipose tissue ranges from 10% in lean mice and humans up to 50% in extremely obese, leptin deficient mice and almost 40% in obese humans. Increased number of adipose tissue macrophages correlates with increased adipose tissue production of proinflammatory molecules and might therefore contribute to the pathophysiological consequences of obesity.

<span class="mw-page-title-main">Gökhan S. Hotamisligil</span> American geneticist

Gökhan S. Hotamisligil is a Turkish-American physician scientist; James Stevens Simmons Chair of Genetics and Metabolism at Harvard T.H. Chan School of Public Health (HSPH); Director of the Sabri Ülker Center for Metabolic Research and associate member of Harvard-MIT Broad Institute, Harvard Stem Cell Institute and the Joslin Diabetes Center.

Hepatokines are proteins produced by liver cells (hepatocytes) that are secreted into the circulation and function as hormones across the organism. Research is mostly focused on hepatokines that play a role in the regulation of metabolic diseases such as diabetes and fatty liver and include: Adropin, ANGPTL4, Fetuin-A, Fetuin-B, FGF-21, Hepassocin, LECT2, RBP4,Selenoprotein P, Sex hormone-binding globulin.

Bing Li is an immunologist, researcher, and academic. He is an Endowed Professor for Cancer Immunology, a professor of Pathology at the University of Iowa, and the Director of Iowa Cancer and Obesity Initiative. He is also the founder of BMImmune Inc.

Apoptosis inhibitor of macrophage (AIM) is a protein produced by macrophages that regulates immune responses and inflammation. It plays a crucial role in key intracellular processes like lipid metabolism and apoptosis.

References

  1. Chmurzyńska A (2006). "The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism". Journal of Applied Genetics. 47 (1): 39–48. doi:10.1007/BF03194597. PMID   16424607. S2CID   2622822.
  2. 1 2 3 Smathers RL, Petersen DR (March 2011). "The human fatty acid-binding protein family: evolutionary divergences and functions". Human Genomics. 5 (3): 170–191. doi: 10.1186/1479-7364-5-3-170 . PMC   3500171 . PMID   21504868.
  3. Weisiger RA (October 2002). "Cytosolic fatty acid binding proteins catalyze two distinct steps in intracellular transport of their ligands". Molecular and Cellular Biochemistry. 239 (1–2): 35–43. doi:10.1023/A:1020550405578. PMID   12479566. S2CID   9608133.
  4. Tan NS, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, Desvergne B, et al. (July 2002). "Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription". Molecular and Cellular Biology. 22 (14): 5114–5127. doi:10.1128/MCB.22.14.5114-5127.2002. PMC   139777 . PMID   12077340.
  5. Deutsch DG (2016-10-13). "A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs)". Frontiers in Pharmacology. 7: 370. doi: 10.3389/fphar.2016.00370 . PMC   5062061 . PMID   27790143.
  6. Elmes MW, Kaczocha M, Berger WT, Leung K, Ralph BP, Wang L, et al. (April 2015). "Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD)". The Journal of Biological Chemistry. 290 (14): 8711–8721. doi: 10.1074/jbc.M114.618447 . PMC   4423662 . PMID   25666611.
  7. Pu L, Igbavboa U, Wood WG, Roths JB, Kier AB, Spener F, Schroeder F (August 1999). "Expression of fatty acid binding proteins is altered in aged mouse brain". Molecular and Cellular Biochemistry. 198 (1–2): 69–78. doi:10.1023/A:1006946027619. PMID   10497880. S2CID   6180992.
  8. 1 2 Storch J, Thumser AE (October 2010). "Tissue-specific functions in the fatty acid-binding protein family". The Journal of Biological Chemistry. 285 (43): 32679–32683. doi: 10.1074/jbc.R110.135210 . PMC   2963392 . PMID   20716527.
  9. Koundouros N, Poulogiannis G (January 2020). "Reprogramming of fatty acid metabolism in cancer". British Journal of Cancer. 122 (1): 4–22. doi:10.1038/s41416-019-0650-z. PMC   6964678 . PMID   31819192.
  10. Hotamisligil GS (December 2006). "Inflammation and metabolic disorders". Nature. 444 (7121): 860–867. Bibcode:2006Natur.444..860H. doi:10.1038/nature05485. PMID   17167474.
  11. Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, et al. (February 2005). "Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes". Cell Metabolism. 1 (2): 107–119. doi: 10.1016/j.cmet.2004.12.008 . PMID   16054052.
  12. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW (December 2003). "Obesity is associated with macrophage accumulation in adipose tissue". The Journal of Clinical Investigation. 112 (12): 1796–1808. doi: 10.1172/JCI19246 . PMC   296995 . PMID   14679176.
  13. Furuhashi M, Tuncman G, Görgün CZ, Makowski L, Atsumi G, Vaillancourt E, et al. (June 2007). "Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2". Nature. 447 (7147): 959–965. Bibcode:2007Natur.447..959F. doi:10.1038/nature05844. PMC   4076119 . PMID   17554340.
  14. Liu RZ, Li X, Godbout R (December 2008). "A novel fatty acid-binding protein (FABP) gene resulting from tandem gene duplication in mammals: transcription in rat retina and testis". Genomics. 92 (6): 436–445. doi:10.1016/j.ygeno.2008.08.003. PMID   18786628.