Calmodulin-binding proteins

Last updated

Calmodulin-binding proteins are, as their name implies, proteins which bind calmodulin. Calmodulin can bind to a variety of proteins through a two-step binding mechanism, namely "conformational and mutually induced fit", [1] where typically two domains of calmodulin wrap around an emerging helical calmodulin binding domain from the target protein.

Contents

Examples include:

Ca2+ Activation

A variety of different ions, including Calcium (Ca2+), play a vital role in the regulation of cellular functions. Calmodulin, a Calcium-binding protein, that mediates Ca2+ signaling is involved in all types of cellular mechanisms, including metabolism, synaptic plasticity, nerve growth, smooth muscle contraction, etc. Calmodulin allows for a number of proteins to aid in the progression of these pathways using their interactions with CaM in its Ca2+-free or Ca2+-bound state. Proteins each have their own unique affinities for calmodulin, that can be manipulated by Ca2+ concentrations to allow for the desired release or binding to calmodulin that determines its ability to carry out its cellular function. Proteins that get activated upon binding to Ca2+-bound state, include Myosin light-chain kinase, Phosphatase, Ca2+/calmodulin-dependent protein kinase II, etc. Proteins, such as neurogranin that plays a vital role in postsynaptic function, however, can bind to calmodulin in Ca2+-free or Ca2+-bound state via their IQ calmodulin-binding motifs. [2] Since these interactions are exceptionally specific, they can be regulated through post-translational modifications by enzymes like kinases and phosphatases to affect their cellular functions. In the case of neurogranin, it's the synaptic function can be inhibited by the PKC-mediated phosphorylation of its IQ calmodulin-binding motif that impedes its interaction with calmodulin. [3]

Cellular functions can be indirectly regulated by calmodulin, as it acts as a mediator for enzymes that require Ca2+ stimulation for activation. Studies have proven that calmodulin's affinity for Ca2+ increases when it is bound to a calmodulin-binding protein, which allows for it to take on its regulatory role for Ca2+-dependent reactions. Calmodulin, made up of two pairs of EF-hand motifs separated in different structural regions by an extended alpha helical region, that permits it to respond to the changes in the cytosolic concentration of the Ca2+ ions by taking on two distinct conformations, in the inactive Ca2+ unbound state and active Ca2+ bound state. Calmodulin binds to the targeted proteins via their short complementary peptide sequences, causing an “induced fit” conformational change that alters the calmodulin-binding proteins’ activity as desired in response to the second messenger Ca2+ signals that arise due to changes in the intracellular Ca2+ concentrations. These second messenger Ca2+ signals are transduced and integrated to maintain a homeostatic balance of the Ca2+ ions. [4]

GAP-43 Protein

Found in the nervous system, GAP-43 is a growth-associated protein (GAP) expressed in high levels during presynaptic developmental and regenerative axonal growth. As a major growth cone component, an increase in GAP-43 concentrations delays the process of axonal growth cones evolving into stable synaptic terminals. All GAP-43 proteins share a completely conserved amino acid sequence that contain a calmodulin-binding domain and a serine residue that can be used to inhibit calmodulin binding upon phosphorylation of Protein kinase C (PKC). By possessing these calmodulin-binding properties, GAP-43 is able to respond to PKC activation and release free calmodulin in desired areas. When there are low levels of Ca2+ concentrations, GAP-43 is able to bind and stabilize the inactive Ca2+-free state of calmodulin, this allows it to absorb and reversibly inactivate the CaM in the growth cones. This binding of the calmodulin to GAP-43 is allowed by the electrostatic interaction between the negatively-charged calmodulin and the positively-charged “pocket” formed in the GAP-43 molecule. [5]

Related Research Articles

Signal transduction Cascade of intracellular and molecular events for transmission/amplification of signals

Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellular response. Proteins responsible for detecting stimuli are generally termed receptors, although in some cases the term sensor is used. The changes elicited by ligand binding in a receptor give rise to a biochemical cascade, which is a chain of biochemical events known as a signaling pathway.

Calmodulin Calcium Modulated Protein

Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all eukaryotic cells. It is an intracellular target of the secondary messenger Ca2+, and the binding of Ca2+ is required for the activation of calmodulin. Once bound to Ca2+, calmodulin acts as part of a calcium signal transduction pathway by modifying its interactions with various target proteins such as kinases or phosphatases.

AMPA receptor Transmembrane protein family

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor is an ionotropic transmembrane receptor for glutamate (iGluR) that mediates fast synaptic transmission in the central nervous system (CNS). It has been traditionally classified as a non-NMDA-type receptor, along with the kainate receptor. Its name is derived from its ability to be activated by the artificial glutamate analog AMPA. The receptor was first named the "quisqualate receptor" by Watkins and colleagues after a naturally occurring agonist quisqualate and was only later given the label "AMPA receptor" after the selective agonist developed by Tage Honore and colleagues at the Royal Danish School of Pharmacy in Copenhagen. The GRIA2-encoded AMPA receptor ligand binding core was the first glutamate receptor ion channel domain to be crystallized.

Monoamine transporter

Monoamine transporters (MATs) are protein structures that function as integral plasma-membrane transporters to regulate concentrations of extracellular monoamine neurotransmitters. Three major classes of MATs are responsible for the reuptake of their associated amine neurotransmitters. MATs are located just outside the synaptic cleft (peri-synaptically), transporting monoamine transmitter overflow from the synaptic cleft back to the cytoplasm of the pre-synaptic neuron. MAT regulation generally occurs through protein phosphorylation and posttranslational modification. Due to their significance in neuronal signaling, MATs are commonly associated with drugs used to treat mental disorders as well as recreational drugs. Compounds targeting MATs range from medications such as the wide variety of tricyclic antidepressants, selective serotonin reuptake inhibitors such as fluoxetine (Prozac) to stimulant medications such as methylphenidate (Ritalin) and amphetamine in its many forms and derivatives methamphetamine (Desoxyn) and lisdexamfetamine (Vyvanse). Furthermore, drugs such as MDMA and natural alkaloids such as cocaine exert their effects in part by their interaction with MATs, by blocking the transporters from mopping up dopamine, serotonin, and other neurotransmitters from the synapse.

CAMK, also written as CaMK, is an abbreviation for the Ca2+/calmodulin-dependent protein kinase class of enzymes. CAMKs are activated by increases in the concentration of intracellular calcium ions (Ca2+) and calmodulin. When activated, the enzymes transfer phosphates from ATP to defined serine or threonine residues in other proteins, so they are serine/threonine-specific protein kinases. Activated CAMK is involved in the phosphorylation of transcription factors and therefore, in the regulation of expression of responding genes. CAMK also works to regulate the cell life cycle (i.e. programmed cell death), rearrangement of the cell's cytoskeletal network, and mechanisms involved in the learning and memory of an organism.

Calcium signaling

Calcium signaling is the use of calcium ions (Ca2+) to communicate and drive intracellular processes often as a step in signal transduction. Ca2+ is important for cellular signalling, for once it enters the cytosol of the cytoplasm it exerts allosteric regulatory effects on many enzymes and proteins. Ca2+ can act in signal transduction resulting from activation of ion channels or as a second messenger caused by indirect signal transduction pathways such as G protein-coupled receptors.

Myosin light-chain kinase Class of kinase enzymes

Myosin light-chain kinase also known as MYLK or MLCK is a serine/threonine-specific protein kinase that phosphorylates a specific myosin light chain, namely, the regulatory light chain of myosin II.

Synaptotagmin

Synaptotagmins (SYTs) constitute a family of membrane-trafficking proteins that are characterized by an N-terminal transmembrane region (TMR), a variable linker, and two C-terminal C2 domains - C2A and C2B. There are 17 isoforms in the mammalian synaptotagmin family. There are several C2-domain containing protein families that are related to synaptotagmins, including transmembrane (Ferlins, Extended-Synaptotagmin (E-Syt) membrane proteins, and MCTPs) and soluble (RIMS1 and RIMS2, UNC13D, synaptotagmin-related proteins and B/K) proteins. The family includes synaptotagmin 1, a Ca2+ sensor in the membrane of the pre-synaptic axon terminal, coded by gene SYT1.

Platelet-derived growth factor receptor

Platelet-derived growth factor receptors (PDGF-R) are cell surface tyrosine kinase receptors for members of the platelet-derived growth factor (PDGF) family. PDGF subunits -A and -B are important factors regulating cell proliferation, cellular differentiation, cell growth, development and many diseases including cancer. There are two forms of the PDGF-R, alpha and beta each encoded by a different gene. Depending on which growth factor is bound, PDGF-R homo- or heterodimerizes.

Ca<sup>2+</sup>/calmodulin-dependent protein kinase II

Ca2+
/calmodulin-dependent protein kinase II
is a serine/threonine-specific protein kinase that is regulated by the Ca2+
/calmodulin complex. CaMKII is involved in many signaling cascades and is thought to be an important mediator of learning and memory. CaMKII is also necessary for Ca2+
homeostasis and reuptake in cardiomyocytes, chloride transport in epithelia, positive T-cell selection, and CD8 T-cell activation.

Gap-43 protein

Growth Associated Protein 43 (GAP43) is a protein encoded by the GAP43 gene in humans.

Neurogranin

Neurogranin is a calmodulin-binding protein expressed primarily in the brain, particularly in dendritic spines, and participating in the protein kinase C signaling pathway. Neurogranin is the main postsynaptic protein regulating the availability of calmodulin, binding to it in the absence of calcium. Phosphorylation by protein kinase C lowers its binding ability. NRGN gene expression is controlled by thyroid hormones. Human neurogranin consists of 78 amino acids.

Calcium/calmodulin-dependent protein kinase type II subunit alpha Protein-coding gene in the species Homo sapiens

Calcium/calmodulin-dependent protein kinase type II subunit alpha (CAMKIIα), a.k.a.Ca2+/calmodulin-dependent protein kinase II alpha, is one subunit of CamKII, a protein kinase (i.e., an enzyme which phosphorylates proteins) that in humans is encoded by the CAMK2A gene.

Inositol-trisphosphate 3-kinase

Inositol (1,4,5) trisphosphate 3-kinase (EC 2.7.1.127), abbreviated here as ITP3K, is an enzyme that facilitates a phospho-group transfer from adenosine triphosphate to 1D-myo-inositol 1,4,5-trisphosphate. This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with an alcohol group as acceptor. The systematic name of this enzyme class is ATP:1D-myo-inositol-1,4,5-trisphosphate 3-phosphotransferase. ITP3K catalyzes the transfer of the gamma-phosphate from ATP to the 3-position of inositol 1,4,5-trisphosphate to form inositol 1,3,4,5-tetrakisphosphate. ITP3K is highly specific for the 1,4,5-isomer of IP3, and it exclusively phosphorylates the 3-OH position, producing Ins(1,3,4,5)P4, also known as inositol tetrakisphosphate or IP4.

Calcium-binding protein 1

Calcium binding protein 1 is a protein that in humans is encoded by the CABP1 gene. Calcium-binding protein 1 is a calcium-binding protein discovered in 1999. It has two EF hand motifs and is expressed in neuronal cells in such areas as hippocampus, habenular nucleus of the epithalamus, Purkinje cell layer of the cerebellum, and the amacrine cells and cone bipolar cells of the retina.

Synapsin I Protein-coding gene in the species Homo sapiens

Synapsin I, is the collective name for Synapsin Ia and Synapsin Ib, two nearly identical phosphoproteins that in humans are encoded by the SYN1 gene. In its phosphorylated form, Synapsin I may also be referred to as phosphosynaspin I. Synapsin I is the first of the proteins in the synapsin family of phosphoproteins in the synaptic vesicles present in the central and peripheral nervous systems. Synapsin Ia and Ib are close in length and almost the same in make up, however, Synapsin Ib stops short of the last segment of the C-terminal in the amino acid sequence found in Synapsin Ia.

Active zone

The active zone or synaptic active zone is a term first used by Couteaux and Pecot-Dechavassinein in 1970 to define the site of neurotransmitter release. Two neurons make near contact through structures called synapses allowing them to communicate with each other. As shown in the adjacent diagram, a synapse consists of the presynaptic bouton of one neuron which stores vesicles containing neurotransmitter, and a second, postsynaptic neuron which bears receptors for the neurotransmitter, together with a gap between the two called the synaptic cleft. When an action potential reaches the presynaptic bouton, the contents of the vesicles are released into the synaptic cleft and the released neurotransmitter travels across the cleft to the postsynaptic neuron and activates the receptors on the postsynaptic membrane.

Mary B. Kennedy American biochemist and neuroscientist

Mary Bernadette Kennedy is an American biochemist and neuroscientist. She is a member of the American Academy of Arts and Sciences, and is the Allen and Lenabelle Davis Professor of Biology at the California Institute of Technology, where she has been a member of the faculty since 1981. Her research focuses on the molecular mechanisms of synaptic plasticity, the process underlying formation of memory in the central nervous system. Her lab uses biochemical and molecular biological methods to study the protein machinery within a structure called the postsynaptic density. Kennedy has published over 100 papers with over 17,000 total citations.

Synaptic stabilization Modifying synaptic strength via cell adhesion molecules

Synaptic stabilization is crucial in the developing and adult nervous systems and is considered a result of the late phase of long-term potentiation (LTP). The mechanism involves strengthening and maintaining active synapses through increased expression of cytoskeletal and extracellular matrix elements and postsynaptic scaffold proteins, while pruning less active ones. For example, cell adhesion molecules (CAMs) play a large role in synaptic maintenance and stabilization. Gerald Edelman discovered CAMs and studied their function during development, which showed CAMs are required for cell migration and the formation of the entire nervous system. In the adult nervous system, CAMs play an integral role in synaptic plasticity relating to learning and memory.

Gap junction modulation

Gap junction modulation describes the functional manipulation of gap junctions, specialized channels that allow direct electrical and chemical communication between cells without exporting material from the cytoplasm. Gap junctions play an important regulatory role in various physiological processes including signal propagation in cardiac muscles and tissue homeostasis of the liver. Modulation is required, since gap junctions must respond to their environment, whether through an increased expression or permeability. Impaired or altered modulation can have significant health implications and are associated with the pathogenesis of the liver, heart and intestines.

References

  1. Wang Q, Zhang P, Hoffman L, Tripathi S, Homouz D, Liu Y, Waxham MN, Cheung MS (December 2013). "Protein recognition and selection through conformational and mutually induced fit". Proc Natl Acad Sci U S A . 110 (51): 20545–50. Bibcode:2013PNAS..11020545W. doi: 10.1073/pnas.1312788110 . PMC   3870683 . PMID   24297894.
  2. Hoffman L, Chandrasekar A, Wang X, Putkey JA, Waxham MN (2014-05-23). "Neurogranin alters the structure and calcium binding properties of calmodulin". J Biol Chem . 289 (21): 14644–55. doi: 10.1074/jbc.M114.560656 . PMC   4031520 . PMID   24713697.
  3. Kaleka, Kanwardeep S.; Petersen, Amber N.; Florence, Matthew A.; Gerges, Nashaat Z. (2012-01-23). "Pull-down of Calmodulin-binding Proteins". Journal of Visualized Experiments (59): 3502. doi:10.3791/3502. ISSN   1940-087X. PMC   3462570 . PMID   22297704.
  4. Zielinski, Raymond E. (1998). "Calmodulin and Calmodulin-Binding Proteins in Plants". Annual Review of Plant Physiology and Plant Molecular Biology. 49 (1): 697–725. doi:10.1146/annurev.arplant.49.1.697. ISSN   1040-2519. PMID   15012251.
  5. Skene, J.H.Pate (1990). "GAP-43 as a 'calmodulin sponge' and some implications for calcium signalling in axon terminals". Neuroscience Research Supplements. 13: S112–S125. doi:10.1016/0921-8696(90)90040-a. ISSN   0921-8696. PMID   1979675.