Fecal coliform

Last updated

A fecal coliform (British: faecal coliform) is a facultatively anaerobic, rod-shaped, gram-negative, non-sporulating bacterium. Coliform bacteria generally originate in the intestines of warm-blooded animals. Fecal coliforms are capable of growth in the presence of bile salts or similar surface agents, are oxidase negative, and produce acid and gas from lactose within 48 hours at 44 ± 0.5°C. [1] The term thermotolerant coliform is more correct and is gaining acceptance over "fecal coliform". [2]

Contents

Coliform bacteria include genera that originate in feces (e.g. Escherichia ) as well as genera not of fecal origin (e.g. Enterobacter , Klebsiella , Citrobacter ). The assay is intended to be an indicator of fecal contamination; more specifically of E. coli which is an indicator microorganism for other pathogens that may be present in feces. Presence of fecal coliforms in water may not be directly harmful, and does not necessarily indicate the presence of feces. [1]

Fecal bacteria as indicator of water quality

Background

In general, increased levels of fecal coliforms provide a warning of failure in water treatment, a break in the integrity of the distribution system, possible contamination with pathogens. When levels are high there may be an elevated risk of waterborne gastroenteritis. Tests for the bacteria are cheap, reliable and rapid (1-day incubation).

Potential sources of bacteria in water

The presence of fecal coliform in aquatic environments may indicate that the water has been contaminated with the fecal material of humans or other animals. Fecal coliform bacteria can enter rivers through direct discharge of waste from mammals and birds, from agricultural and storm runoff, and from human sewage. However, their presence may also be the result of plant material, and pulp or paper mill effluent. [1]

Human sewage

Failing home septic systems can allow coliforms in the effluent to flow into the water table, aquifers, drainage ditches and nearby surface waters. Sewage connections that are connected to storm drain pipes can also allow human sewage into surface waters. Some older industrial cities, particularly in the Northeast and Midwest of the United States, use a combined sewer system to handle waste. A combined sewer carries both domestic sewage and stormwater. During high rainfall periods, a combined sewer can become overloaded and overflow to a nearby stream or river, bypassing treatment.

Animals

Pets, especially dogs, can contribute to fecal contamination of surface waters. Runoff from roads, parking lots, and yards can carry animal wastes to streams through storm sewers. Birds can be a significant source of fecal coliform bacteria. Swans, geese, seagulls, and other waterfowl can all elevate bacterial counts, especially in wetlands, lakes, ponds, and rivers.

Agriculture

Agricultural practices such as allowing livestock to graze near water bodies, spreading manure as fertilizer on fields during wet periods, using sewage sludge biosolids and allowing livestock watering in streams can all contribute to fecal coliform contamination.

Problems resulting from fecal contamination of water

Human health hazards

Large quantities of fecal coliform bacteria in water are not harmful according to some authorities, but may indicate a higher risk of pathogens being present in the water. [3] Some waterborne pathogenic diseases that may coincide with fecal coliform contamination include ear infections, dysentery, typhoid fever, viral and bacterial gastroenteritis, and hepatitis A.

Effects on the environment

Untreated organic matter that contains fecal coliform can be harmful to the environment. Aerobic decomposition of this material can reduce dissolved oxygen levels if discharged into rivers or waterways. This may reduce the oxygen level enough to kill fish and other aquatic life. Reduction of fecal coliform in wastewater may require the use of chlorine and other disinfectant chemicals, or UV disinfection treatment. Such materials may kill the fecal coliform and disease bacteria. They also kill bacteria essential to the proper balance of the aquatic environment, endangering the survival of species dependent on those bacteria. So higher levels of fecal coliform require higher levels of chlorine, threatening those aquatic organisms.

Removal and treatment

Fecal coliform, like other bacteria, can usually be inhibited in growth by boiling water, treating with chlorine, or UV disinfection. Washing thoroughly with soap after contact with contaminated water can also help prevent infections. Gloves should always be worn when testing for fecal coliform. Municipalities that maintain a public water supply will typically monitor and treat for fecal coliforms. It can also be removed by iodine.

Testing

Public health risk monitoring

In waters of the U.S., Canada and other countries, water quality is monitored to protect the health of the general public. Bacteria contamination is one monitored pollutant. In the U.S., fecal coliform testing is one of the nine tests of water quality that form the overall water-quality rating in a process used by U.S. EPA. The fecal coliform assay should only be used to assess the presence of fecal matter in situations where fecal coliforms of non-fecal origin are not commonly encountered. [1] EPA has approved a number of different methods to analyze samples for bacteria. [4]

Analysis

Bacteria reproduce rapidly if conditions are right for growth. Most bacteria grow best in dark, warm, moist environments with food. When grown on solid media, some bacteria form colonies as they multiply which may grow large enough to be seen. By growing and counting colonies of fecal coliform bacteria from a sample of water, the amount of bacteria originally present can be determined.

Membrane filtration is the method of choice for the analysis of fecal coliforms in water. Samples to be tested are passed through a filter of particular pore size (generally 0.45 micrometre). The microorganisms present in the water remain on the filter surface. The filter is placed in a sterile Petri dish with a selective medium, growth of the desired organisms is encouraged, while other non-target organisms is suppressed. Each cell develops into a separate colony, which can be counted directly, and the initial inoculum size can be determined. Typically sample volumes of 100 ml will be used for water testing and filtered, with the goal of achieving a final desirable colony density range of 20 to 60 colonies per filter. Contaminated sources may require dilution to achieve a "countable" membrane. The filter is placed on a Petri dish containing M-FC agar and incubated for 24 hours at 44.5 °C (112.1 degrees F). This elevated temperature heat shocks non-fecal bacteria and suppresses their growth. As the fecal coliform colonies grow they produce an acid (through fermenting lactose) that reacts with the aniline dye in the agar thus giving the colonies their blue color.

Newer methods for coliform detection are based on specific enzyme substrates as indicators of coliforms. These assays make use of a sugar linked to a dye which, when acted on by the enzyme beta-galactosidase, produces a characteristic color. The enzyme beta-galactosidase is a marker for coliforms generally and may be assayed by hydrolysis of enzyme specific glycosides such as o-nitrophenyl-beta-D-galactose. Assays typically include a second sugar linked to a different dye which, when acted on by the enzyme beta-glucuronidase, produces a fluorescent product. Because E. coli produces both beta-galactosidase and beta-glucuronidase, a combination of two dyes makes it possible to differentiate and quantify coliforms and E. coli in the same pot.

More recently, the chemistry behind enzymatic detection compounds has been updated so that the indicating component is redox active, as opposed to the more usual chromogenic format, allowing fecal indicator bacteria such as E. coli and E. faecalis to be detected electrochemically without any sample pre-treatment. Since the colour of the detection compound is of no consequence, this allows detection in deeply coloured matrices. [5]

US EPA testing requirements

In 1989 the U.S. Environmental Protection Agency (EPA) published its Total Coliform Rule (TCR) which imposed major monitoring changes for public water systems nationwide. [6] The testing requirements under the 1989 TCR were more thorough than the previous requirements. The required number of routine coliform tests was increased, especially for smaller water utilities. The regulation also required automatic repeat testing from all sources that show a total coliform positive (known as triggered source water monitoring). In 2013 EPA revised the TCR, [7] with minor corrections in 2014. [8]

See also

Related Research Articles

β-Galactosidase Family of glycoside hydrolase enzymes

β-Galactosidase, is a glycoside hydrolase enzyme that catalyzes hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides.

<span class="mw-page-title-main">Drinking water</span> Water safe for consumption

Drinking water or potable water is water that is safe for ingestion, either when drunk directly in liquid form or consumed indirectly through food preparation. It is often supplied through taps, in which case it is also called tap water. Typically in developed countries, tap water meets drinking water quality standards, even though only a small proportion is actually consumed or used in food preparation. Other typical uses for tap water include washing, toilets, and irrigation. Greywater may also be used for toilets or irrigation. Its use for irrigation however may be associated with risks.

<span class="mw-page-title-main">Water quality</span> Assessment against standards for use

Water quality refers to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through treatment of the water, can be assessed. The most common standards used to monitor and assess water quality convey the health of ecosystems, safety of human contact, extent of water pollution and condition of drinking water. Water quality has a significant impact on water supply and oftentimes determines supply options.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services that the water resource would otherwise provide.

<span class="mw-page-title-main">Bacteriological water analysis</span>

Bacteriological water analysis is a method of analysing water to estimate the numbers of bacteria present and, if needed, to find out what sort of bacteria they are. It represents one aspect of water quality. It is a microbiological analytical procedure which uses samples of water and from these samples determines the concentration of bacteria. It is then possible to draw inferences about the suitability of the water for use from these concentrations. This process is used, for example, to routinely confirm that water is safe for human consumption or that bathing and recreational waters are safe to use.

The Walkerton E. coli outbreak was the result of a contamination of the drinking water supply of Walkerton, Ontario, Canada, with E. coli and Campylobacter jejuni bacteria. The water supply was contaminated as a result of improper water treatment following heavy rainfall in late April and early May 2000, that had drawn bacteria from the manure of nearby cattle used to fertilize crops into the shallow aquifer of a nearby well. The first reported case was on May 17. The contamination caused gastroenteritis and sickened more than 2,000 people and resulted in seven deaths.

<span class="mw-page-title-main">Coliform bacteria</span> Group of bacterial species

Coliform bacteria are defined as either motile or non-motile Gram-negative non-spore forming bacilli that possess β-galactosidase to produce acids and gases under their optimal growth temperature of 35–37 °C. They can be aerobes or facultative aerobes, and are a commonly used indicator of low sanitary quality of foods, milk, and water. Coliforms can be found in the aquatic environment, in soil and on vegetation; they are universally present in large numbers in the feces of warm-blooded animals as they are known to inhabit the gastrointestinal system. While coliform bacteria are not normally causes of serious illness, they are easy to culture, and their presence is used to infer that other pathogenic organisms of fecal origin may be present in a sample, or that said sample is not safe to consume. Such pathogens include disease-causing bacteria, viruses, or protozoa and many multicellular parasites.

The coliform index is a rating of the purity of water based on a count of fecal bacteria. It is one of many tests done to assure sufficient water quality. Coliform bacteria are microorganisms that primarily originate in the intestines of warm-blooded animals. By testing for coliforms, especially the well known Escherichia coli, which is a thermotolerant coliform, one can determine if the water has possibly been exposed to fecal contamination; that is, whether it has come in contact with human or animal feces. It is important to know this because many disease-causing organisms are transferred from human and animal feces to water, from where they can be ingested by people and infect them. Water that has been contaminated by feces usually contains pathogenic bacteria, which can cause disease. Some types of coliforms cause disease, but the coliform index is primarily used to judge if other types of pathogenic bacteria are likely to be present in the water.

<span class="mw-page-title-main">Simmons' citrate agar</span> Differential culture medium

Simmons' citrate agar is used for differentiating gram-negative bacteria on the basis of citrate utilization, especially for distinguishing Gammaproteobacteria of the family Enterobacteriaceae or even between species of the same genus. For example, Salmonella enteritidis would yield a positive (blue) result on Simmons’ agar and thus be distinguished from other Salmonella species like Salmonella typhi, Salmonella pullorum, and Salmonella gallinarum, which would yield a negative (green) result.

A coliphage is a type of bacteriophage that infects coliform bacteria such as Escherichia coli. Coliphage originate almost exclusively from human feces and from other warm-blooded animals. When certain circumstances are met, such as a large number of susceptible hosts present at the right temperature, they can only partially replicate in sewage and contaminated waters.

Indicator bacteria are types of bacteria used to detect and estimate the level of fecal contamination of water. They are not dangerous to human health but are used to indicate the presence of a health risk.

<span class="mw-page-title-main">Blue–white screen</span> DNA screening technique

The blue–white screen is a screening technique that allows for the rapid and convenient detection of recombinant bacteria in vector-based molecular cloning experiments. This method of screening is usually performed using a suitable bacterial strain, but other organisms such as yeast may also be used. DNA of transformation is ligated into a vector. The vector is then inserted into a competent host cell viable for transformation, which are then grown in the presence of X-gal. Cells transformed with vectors containing recombinant DNA will produce white colonies; cells transformed with non-recombinant plasmids grow into blue colonies.

<span class="mw-page-title-main">Water testing</span> Procedures used to analyze water quality

Water testing is a broad description for various procedures used to analyze water quality. Millions of water quality tests are carried out daily to fulfill regulatory requirements and to maintain safety.

Indicator organisms are used as a proxy to monitor conditions in a particular environment, ecosystem, area, habitat, or consumer product. Certain bacteria, fungi and helminth eggs are being used for various purposes.

<span class="mw-page-title-main">IMViC</span> Microbiological and biochemical method for identification

The IMViC tests are a group of individual tests used in microbiology lab testing to identify an organism in the coliform group. A coliform is a gram negative, aerobic, or facultative anaerobic rod, which produces gas from lactose within 48 hours. The presence of some coliforms indicate fecal contamination.

<span class="mw-page-title-main">Sewage</span> Wastewater that is produced by a community of people

Sewage is a type of wastewater that is produced by a community of people. It is typically transported through a sewer system. Sewage consists of wastewater discharged from residences and from commercial, institutional and public facilities that exist in the locality. Sub-types of sewage are greywater and blackwater. Sewage also contains soaps and detergents. Food waste may be present from dishwashing, and food quantities may be increased where garbage disposal units are used. In regions where toilet paper is used rather than bidets, that paper is also added to the sewage. Sewage contains macro-pollutants and micro-pollutants, and may also incorporate some municipal solid waste and pollutants from industrial wastewater.

<span class="mw-page-title-main">Freshwater environmental quality parameters</span>

Freshwater environmental quality parameters are those chemical, physical or biological parameters that can be used to characterise a freshwater body. Because almost all water bodies are dynamic in their composition, the relevant quality parameters are typically expressed as a range of expected concentrations.

Pathogenic <i>Escherichia coli</i> Strains of E. coli that can cause disease

Escherichia coli is a gram-negative, rod-shaped bacterium that is commonly found in the lower intestine of warm-blooded organisms (endotherms). Most E. coli strains are harmless, but pathogenic varieties cause serious food poisoning, septic shock, meningitis, or urinary tract infections in humans. Unlike normal flora E. coli, the pathogenic varieties produce toxins and other virulence factors that enable them to reside in parts of the body normally not inhabited by E. coli, and to damage host cells. These pathogenic traits are encoded by virulence genes carried only by the pathogens.

<span class="mw-page-title-main">SOS chromotest</span>

The SOS chromotest is a biological assay to assess the genotoxic potential of chemical compounds. The test is a colorimetric assay which measures the expression of genes induced by genotoxic agents in Escherichia coli, by means of a fusion with the structural gene for β-galactosidase. The test is performed over a few hours in columns of a 96-well microplate with increasing concentrations of test samples. This test was developed as a practical complement or alternative to the traditional Ames test assay for genotoxicity, which involves growing bacteria on agar plates and comparing natural mutation rates to mutation rates of bacteria exposed to potentially mutagenic compounds or samples. The SOS chromotest is comparable in accuracy and sensitivity to established methods such as the Ames test and is a useful tool to screen genotoxic compounds, which could prove carcinogenic in humans, in order to single out chemicals for further in-depth analysis.

<span class="mw-page-title-main">Paper-based biosensor</span>

Paper-based biosensors are a subset of paper-based microfluidics used to detect the presence of pathogens in water. Paper-based detection devices have been touted for their low cost, portability and ease of use. Its portability in particular makes it a good candidate for point-of-care testing. However, there are also limitations to these assays, and scientists are continually working to improve accuracy, sensitivity, and ability to test for multiple contaminants at the same time.

References

  1. 1 2 3 4 Doyle, M. P., and M. C. Erickson. 2006. "Closing the door on the fecal coliform assay." Microbe 1:162–163. ISSN   1558-7460.
  2. Water Quality Monitoring – A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes Edited by Jamie Bartram and Richard Ballance Published on behalf of United Nations Environment Programme and the World Health Organization. 1996 UNEP/WHO ISBN   0 419 22320 7 (Hbk) 0 419 21730 4 (Pbk)
  3. Fresno County Department of Public Health. Fresno, CA (2009)."E. coli or Fecal Coliform Bacteria Contamination in Your Water Supply." Archived 2011-07-18 at the Wayback Machine Notice distributed to private well owners.
  4. U.S. Environmental Protection Agency (EPA). Washington, DC (2008). "Analytical Methods Approved for Drinking Water Compliance Monitoring under the Total Coliform Rule." June 2008.
  5. Hinks, Jamie; et al. (2016). "Naphthoquinone glycosides for bioelectroanalytical enumeration of the faecal indicator Escherichia coli". Microbial Biotechnology. 9 (6): 746–757. doi: 10.1111/1751-7915.12373 . PMC   5072191 . PMID   27364994.
  6. EPA (1989-06-29). "Drinking Water; National Primary Drinking Water Regulations; Total Coliforms (Including Fecal Coliforms and E. Coli)." Final rule. Federal Register,54 FR 27544
  7. EPA (2013-02-13). "National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule." 78 FR 10269
  8. EPA (2014-02-26). "National Primary Drinking Water Regulations: Minor Corrections to the Revisions to the Total Coliform Rule." 79 FR 10665

Additional resources