Flying shuttle

Last updated

Flying shuttle from below, showing metal capped ends, wheels, and a pirn of weft thread Eversberg-0111 (cropped).JPG
Flying shuttle from below, showing metal capped ends, wheels, and a pirn of weft thread
From above, showing conical pirn, and end-feed mechanism (the yarn slips off the end of the pirn, which need not rotate). Frisador Curler.jpg
From above, showing conical pirn, and end-feed mechanism (the yarn slips off the end of the pirn, which need not rotate).
Flying shuttle in the shuttle race Grossschonau - muzeum damaskove a smyckove tkaniny 7787.jpg
Flying shuttle in the shuttle race

The flying shuttle is a type of weaving shuttle. It was a pivotal advancement in the mechanisation of weaving during the initial stages of the Industrial Revolution, and facilitated the weaving of considerably broader fabrics, enabling the production of wider textiles. Moreover, its mechanical implementation paved the way for the introduction of automatic machine looms.

Contents

The brainchild of John Kay, the flying shuttle received a patent in the year 1733 during the Industrial Revolution. Its implementation brought about an acceleration of the previously manual weaving process and resulted in a significant reduction in the required labour force. Formerly, a broad-cloth loom necessitated the presence of a weaver on each side, but with the advent of the flying shuttle, a solitary operator could handle the task proficiently. Prior to this breakthrough, the textile industry relied upon the coordination of four spinners to support a single weaver.

The widespread adoption of the flying shuttle by the 1750s dramatically exacerbated this labour imbalance, marking a notable shift in textile production dynamics. [1]

History

The history of this device is difficult to accurately ascertain due to poor documentation at the time. Nonetheless, there are two general schools of thought around this: first those that believe that it appears to have been invented in the region of Languedoc of southern France (one year before its introduction in England), but was destroyed by state cloth inspectors of the rent-seeking Ancien Regime; [2] second, those that believe it simply originated where it was industrialized, that is in England.

Operation

Holding the reed beater bar in the left hand, and the (picking-stick-mounted) string tugged to return the flying shuttle in the right hand. See video below. Yarn and cloth making; an economic study; a college and normal schools text preliminary to fabric study, and a reference for teachers of industrial history and art in secondary and elementary schools (14598368328).jpg
Holding the reed beater bar in the left hand, and the (picking-stick-mounted) string tugged to return the flying shuttle in the right hand. See video below.

In a typical frame loom, as used previous to the invention of the flying shuttle, the operator sat with the newly woven cloth before them, using treadles or some other mechanism to raise and lower the heddles, which opened the shed in the warp threads. They then had to reach forward while holding the shuttle in one hand and pass this through the shed; the shuttle carried a bobbin for the weft. The shuttle then had to be caught in the other hand, the shed closed, and the beater pulled in against the fell to push the weft into place. This action (called a "pick") required regularly bending forward over the fabric.

More importantly, the coordination between the throwing and catching of the shuttle required that the weaver was weaving narrow cloth (typically 60 inches (150 cm) or less). If the loom was for weaving broad cloth multiple weavers were needed: one on the left side at the shed, and one on the right side at the shed (and sometimes, one to operate the treadles). These two reached across the loom, passing the shuttle back and forth through the shed.

The flying shuttle employs a smooth board, called the "race," which runs, side to side, along the front of the beater, forming a track on which the shuttle runs. The lower threads of the shed rest on the track and the shuttle slides over them. At each end of the race, there is a box which catches the shuttle at the end of its journey, and which contains a mechanism for propelling the shuttle on its return trip (which may be yanked into action by the cord from the handheld picking-stick, or fully automated)

The shuttle itself has some subtle differences from the older form, especially for automated and powered looms. The ends of the shuttle are often bullet-shaped and metal-capped, and the shuttle generally has rollers to reduce friction. The weft thread is made to exit from the end rather than the side, and the thread is stored on a pirn (a long, conical, one-ended, non-turning bobbin) to allow it to feed more easily. Finally, the flying shuttle is generally somewhat heavier, so as to have sufficient momentum to carry it all the way through the shed.

Social effects

The increase in production due to the flying shuttle exceeded the capacity of the spinning industry of the day and prompted the development of powered spinning machines. Beginning with the spinning jenny and the waterframe until ultimately culminating in the spinning mule, which could produce strong, fine thread in the quantities needed [3] [4] these innovations transformed the textile industry in Great Britain. The innovation was seen as a threat to the livelihood of spinners & weavers, which resulted in an uprising that had Kay's patent largely ignored. It is often incorrectly written that Kay was attacked and fled to France, but in fact he simply moved there to attempt to rent out his looms, a business model that had failed him in England. [5]

The flying shuttle produced a new source of injuries to the weaving process; if deflected from its path, it could be shot clear of the machine, potentially striking and injuring workers. Turn-of-the-century injury reports abound with instances in which eyes were lost or other injuries sustained and, in several instances (for example, an extended exchange in 1901), the British House of Commons was moved to take up the issue of installing guards and other contrivances to reduce these injuries. [6]

Obsolescence

The flying shuttle dominated commercial weaving through the middle of the twentieth century. However, by that time, other systems had begun to replace it. The heavy shuttle was noisy and energy-inefficient (since the energy used to throw it was largely lost in the catching); also, its inertia limited the speed of the loom. Projectile and rapier looms eliminated the need to take the bobbin/pirn of thread through the shed; later, air- and water-jet looms reduced the weight of moving parts further. Flying shuttle looms are still used for some purposes, and old models remain in use.

Related Research Articles

<span class="mw-page-title-main">Loom</span> Device for weaving textiles

A loom is a device used to weave cloth and tapestry. The basic purpose of any loom is to hold the warp threads under tension to facilitate the interweaving of the weft threads. The precise shape of the loom and its mechanics may vary, but the basic function is the same.

<span class="mw-page-title-main">Weaving</span> Technology for the production of textiles

Weaving is a method of textile production in which two distinct sets of yarns or threads are interlaced at right angles to form a fabric or cloth. Other methods are knitting, crocheting, felting, and braiding or plaiting. The longitudinal threads are called the warp and the lateral threads are the weft, woof, or filling. The method in which these threads are interwoven affects the characteristics of the cloth. Cloth is usually woven on a loom, a device that holds the warp threads in place while filling threads are woven through them. A fabric band that meets this definition of cloth can also be made using other methods, including tablet weaving, back strap loom, or other techniques that can be done without looms.

<span class="mw-page-title-main">Spinning jenny</span> Multi-spool spinning frame

The spinning jenny is a multi-spindle spinning frame, and was one of the key developments in the industrialisation of textile manufacturing during the early Industrial Revolution. It was invented in 1764–1765 by James Hargreaves in Stan hill, Oswaldtwistle, Lancashire in England.

<span class="mw-page-title-main">Power loom</span> Mechanised loom powered by a line shaft

A power loom is a mechanized loom, and was one of the key developments in the industrialization of weaving during the early Industrial Revolution. The first power loom was designed and patented in 1785 by Edmund Cartwright. It was refined over the next 47 years until a design by the Howard and Bullough company made the operation completely automatic. This device was designed in 1834 by James Bullough and William Kenworthy, and was named the Lancashire loom.

<span class="mw-page-title-main">Warp and weft</span> Two constituent threads of woven cloth

In the manufacture of cloth, warp and weft are the two basic components in weaving to transform thread and yarn into textile fabrics. The vertical warp yarns are held stationary in tension on a loom (frame) while the horizontal weft is drawn through the warp thread. In the terminology of weaving, each warp thread is called a warp end ; a pick is a single weft thread that crosses the warp thread.

<span class="mw-page-title-main">John Kay (flying shuttle)</span> British inventor

John Kay was an English inventor whose most important creation was the flying shuttle, which was a key contribution to the Industrial Revolution. He is often confused with his namesake, who built the first "spinning frame".

A shuttle is a tool designed to neatly and compactly store a holder that carries the thread of the weft yarn while weaving with a loom. Shuttles are thrown or passed back and forth through the shed, between the yarn threads of the warp in order to weave in the weft.

<span class="mw-page-title-main">Textile manufacturing</span> The industry which produces textiles

Textile manufacturing or textile engineering is a major industry. It is largely based on the conversion of fibre into yarn, then yarn into fabric. These are then dyed or printed, fabricated into cloth which is then converted into useful goods such as clothing, household items, upholstery and various industrial products.

<span class="mw-page-title-main">Pirn</span> Rod onto which weft thread is wound for use in weaving

A pirn is a rod onto which weft thread is wound for use in weaving. Unlike a bobbin, it is fixed in place, and the thread is delivered off the end of the pirn rather than from the centre. A typical pirn is made of wood or plastic and is slightly tapered for most of its length, flaring out more sharply at the base, which fits over a pin in the shuttle. Pirns are wound from the base forward in order to ensure snag-free delivery of the thread, unlike bobbins, which are wound evenly from end to end.

The manufacture of textiles is one of the oldest of human technologies. To make textiles, the first requirement is a source of fiber from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving, with color and patterns, which turns it into cloth. The machine used for weaving is the loom. For decoration, the process of coloring yarn or the finished material is dyeing. For more information of the various steps, see textile manufacturing.

<span class="mw-page-title-main">Weavers' cottage</span> Housing for cloth weavers

A weavers' cottage was a type of house used by weavers for cloth production in the putting-out system sometimes known as the domestic system.

<span class="mw-page-title-main">Lancashire Loom</span> Semi-automatic power loom (1842)

The Lancashire Loom was a semi-automatic power loom invented by James Bullough and William Kenworthy in 1842. Although it is self-acting, it has to be stopped to recharge empty shuttles. It was the mainstay of the Lancashire cotton industry for a century.

Textile manufacturing is one of the oldest human activities. The oldest known textiles date back to about 5000 B.C. In order to make textiles, the first requirement is a source of fibre from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving to create cloth. The machine used for weaving is the loom. Cloth is finished by what are described as wet process to become fabric. The fabric may be dyed, printed or decorated by embroidering with coloured yarns.

<span class="mw-page-title-main">Bradford Industrial Museum</span> Industrial museum, Mill museum, Textile museum, in Eccleshill, Bradford

Bradford Industrial Museum, established 1974 in Moorside Mills, Eccleshill, Bradford, United Kingdom, specializes in relics of local industry, especially printing and textile machinery, kept in working condition for regular demonstrations to the public. There is a Horse Emporium in the old canteen block plus a shop in the mill, and entry is free of charge.

<span class="mw-page-title-main">Queen Street Mill</span> Building in Harle Syke, to the north-east of Burnley, Lancashire

Queen Street Mill is a former weaving mill in Harle Syke, a suburb to the north-east of Burnley, Lancashire, that is a Grade I listed building. It now operates as a museum and cafe. Currently open for public tours between April and November. Over winter the café is opened on Wednesdays. It is also viewable with private bookings.

<span class="mw-page-title-main">Weaving shed</span> Originally a single storey mill developed in the 1800s

A weaving shed is a distinctive type of mill developed in the early 1800s in Lancashire, Derbyshire and Yorkshire to accommodate the new power looms weaving cotton, silk, woollen and worsted. A weaving shed can be a stand-alone mill, or a component of a combined mill. Power looms cause severe vibrations requiring them to be located on a solid ground floor. In the case of cotton, the weaving shed needs to remain moist. Maximum daylight is achieved, by the sawtooth "north-facing roof lights".

<span class="mw-page-title-main">Bancroft Shed</span> Mill museum in England

Bancroft Shed was a weaving shed in Barnoldswick, Lancashire, England, situated on the road to Skipton. Construction was started in 1914 and the shed was commissioned in 1920 for James Nutter & Sons Limited. The mill closed on 22 December 1978 and was demolished. The engine house, chimneys and boilers have been preserved and maintained as a working steam museum. The mill was the last steam-driven weaving shed to be constructed and the last to close.

<span class="mw-page-title-main">More looms</span>

The more looms system was a productivity strategy introduced in the Lancashire cotton industry, whereby each weaver would manage a greater number of looms. It was an alternative to investing in the more productive Northrop automatic looms in the 1930s. It caused resentment, resulted in industrial action, and failed to achieve any significant cost savings.

<span class="mw-page-title-main">Kissing the shuttle</span> Using the mouth to rethread a weavers shuttle

"Kissing the shuttle" is the term for a process by which weavers used their mouths to pull thread through the eye of a shuttle when the pirn was replaced. The same shuttles were used by many weavers, and the practice was unpopular. It was outlawed in the U.S. state of Massachusetts in 1911 but continued even after it had been outlawed in Lancashire, England in 1952. The Lancashire cotton industry was loath to invest in hand-threaded shuttles, or in the more productive Northrop automatic looms with self-threading shuttles, which were introduced in 1902.

<span class="mw-page-title-main">Narrow cloth</span> A fabric type, woven on narrow width loom

"Narrow cloth" is cloth of a comparatively narrow width, generally less than a human armspan; precise definitions vary.

References

  1. "History of technology". www.historyworld.net. Retrieved 2 November 2017.
  2. See Heller, Labour, 180-1, for Lyon; James K.J Thompson, Clermont-de-Ledéve 1633–1789: Fluctuations in the Prosperity of a Languedocian Cloth-Making Town (Cambridge: Cambridge University Press, 1982), 336-7, for Languedoc. ----- cite from an Essay Craft Guilds, Apprenticeship, and Technological Change by S. R. Epstein in the collection Guilds, Innovation, and the European Economy, 1400-1800, Cambridge University Press, 2008, page. 68
  3. Landes, David S. (1969). The Unbound Prometheus: Technological Change and Industrial Development in Western Europe from 1750 to the Present. Cambridge, New York: Press Syndicate of the University of Cambridge. ISBN   0-521-09418-6.
  4. Ayres, Robert (February 1989). "Technological Transformations and Long Waves" (PDF). Research Reports. Laxenburg, Austria: International Institute for Applied Systems Analysis. ISBN   3704500925. Archived from the original (PDF) on 1 January 2018. Retrieved 6 February 2018.
  5. "Flying Shuttle Invention in the Industrial Revolution". HISTORY CRUNCH - History Articles, Biographies, Infographics, Resources and More. Retrieved 25 February 2023.
  6. House of Commons of the United Kingdom (January–August 1901). "Factories and workshops: Annual report for 1900". Sessional Papers. X. H. M. Stationery Off.: 289–290. OCLC   4689281. During the past year I have investigated many shuttle accidents, and on no occasion where serious injury had resulted, has the shuttle guard been placed in that position for which it was intended.