Rapier loom

Last updated
A Ruti Rapier Loom at The Silk Museum, with a Jacquard machine above it Ruti rapier loom.JPG
A Ruti Rapier Loom at The Silk Museum, with a Jacquard machine above it

A rapier loom is a shuttleless weaving loom in which the filling yarn is carried through the shed of warp yarns to the other side of the loom by finger-like carriers called rapiers. [1]

Contents

A stationary package of yarn is used to supply the weft yarns in the rapier machine. One end of a rapier, a rod or steel tape, carries the weft yarn. The other end of the rapier is connected to the control system. The rapier moves across the width of the fabric, carrying the weft yarn across through the shed to the opposite side. The rapier is then retracted, leaving the new pick in place.

In some versions of the loom, two rapiers are used, each half the width of the fabric in size. One rapier carries the yarn to the center of the shed, where the opposing rapier picks up the yarn and carries it the remainder of the way across the shed. [2] The double rapier is used more frequently than the single rapier due to its increased pick insertion speed and ability to weave wider widths of fabric.

The housing for the rapiers must take up as much space as the width of the machine. To overcome this problem, looms with flexible rapiers have been devised. The flexible rapier can be coiled as it is withdrawn, therefore requiring less storage space. If, however, the rapier is too stiff then it will not coil; if it is too flexible, it will buckle. Rigid and flexible rapier machines operate at speeds ranging from about 200 to 260 ppm, using up to 1,300 meters of weft yarn every minute. They have a noise level similar to that of modern projectile looms. They can produce a wide variety of fabrics ranging from muslin to drapery and upholstery materials.

Newer rapier machines are built with two distinct weaving areas for two separate fabrics. On such machines, one rapier picks up the yarn from the centre, between the two fabrics, and carries it across one weaving area; as it finishes laying that pick, the opposite end of the rapier picks up another yarn from the centre, and the rapier moves in the other direction to lay a pick for the second weaving area, on the other half of the machine.

Rapier machines weave more rapidly than most shuttle machines but more slowly than most other projectile machines. An important advantage of rapier machines is their flexibility, which permits the laying of picks of different colours. They also weave yarns of any type of fiber and can weave fabrics up to 110 inches in width without modification.

History of the rapier loom

The development of the rapier loom began in 1844, when John Smith of Salford was granted a patent on a loom design that eliminated the shuttle typical of earlier models of looms. [3] Subsequent patents were taken out by Phillippe and Maurice in 1855, W.S. Laycock in 1869, and W. Glover in 1874, with rigid rapiers being perfected by O. Hallensleben in 1899. The main breakthrough came in 1922 when John Gabler invented the principle of loop transfer in the middle of the shed. [4] Flexible rapiers of the type used today were proposed in 1925 by the Spanish inventor R.G. Moya, while R. Dewas introduced the idea of grasping the weft at its tip by the giver or a carrier rapier and transferring it to the taker or a receiver in the middle of the shed. It was not until the 1950s and 1960s that rapier weaving became fully commercialized, with loom technology developing rapidly. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Jacquard machine</span> Control device attached to weaving looms

The Jacquard machine is a device fitted to a loom that simplifies the process of manufacturing textiles with such complex patterns as brocade, damask and matelassé. The resulting ensemble of the loom and Jacquard machine is then called a Jacquard loom. The machine was patented by Joseph Marie Jacquard in 1804, based on earlier inventions by the Frenchmen Basile Bouchon (1725), Jean Baptiste Falcon (1728), and Jacques Vaucanson (1740). The machine was controlled by a "chain of cards"; a number of punched cards laced together into a continuous sequence. Multiple rows of holes were punched on each card, with one complete card corresponding to one row of the design.

<span class="mw-page-title-main">Loom</span> Device for weaving textiles

A loom is a device used to weave cloth and tapestry. The basic purpose of any loom is to hold the warp threads under tension to facilitate the interweaving of the weft threads. The precise shape of the loom and its mechanics may vary, but the basic function is the same.

<span class="mw-page-title-main">Weaving</span> Technology for the production of textiles

Weaving is a method of textile production in which two distinct sets of yarns or threads are interlaced at right angles to form a fabric or cloth. Other methods are knitting, crocheting, felting, and braiding or plaiting. The longitudinal threads are called the warp and the lateral threads are the weft, woof, or filling. The method in which these threads are interwoven affects the characteristics of the cloth. Cloth is usually woven on a loom, a device that holds the warp threads in place while filling threads are woven through them. A fabric band that meets this definition of cloth can also be made using other methods, including tablet weaving, back strap loom, or other techniques that can be done without looms.

<span class="mw-page-title-main">Denim</span> Warp-faced textile

Denim is a sturdy cotton warp-faced textile in which the weft passes under two or more warp threads. This twill weave produces a diagonal ribbing that distinguishes it from cotton duck. Denim, as it is recognized today, was first produced in Nîmes, France.

<span class="mw-page-title-main">Power loom</span> Mechanised loom powered by a line shaft

A power loom is a mechanized loom, and was one of the key developments in the industrialization of weaving during the early Industrial Revolution. The first power loom was designed and patented in 1785 by Edmund Cartwright. It was refined over the next 47 years until a design by the Howard and Bullough company made the operation completely automatic. This device was designed in 1834 by James Bullough and William Kenworthy, and was named the Lancashire loom.

<span class="mw-page-title-main">Twill</span> Woven fabric textile weave

Twill is a type of textile weave with a pattern of diagonal parallel ribs. It is one of three fundamental types of weave, along with plain weave and satin. It is made by passing the weft thread over one or more warp threads then under two or more warp threads and so on, with a "step," or offset, between rows to create the characteristic diagonal pattern. Because of this structure, twill generally drapes well.

Ikat is a dyeing technique from Indonesia used to pattern textiles that employs resist dyeing on the yarns prior to dyeing and weaving the fabric. The term is also used to refer to related and unrelated traditions in other cultures. In Southeast Asia, where it is the most widespread, ikat weaving traditions can be divided into two general clades. The first is found among Daic-speaking peoples. The second, larger group is found among the Austronesian peoples and spread via the Austronesian expansion. Similar dyeing and weaving techniques that developed independently are also present in other regions of the world, including India, Central Asia, Japan, Africa, and the Americas.

<span class="mw-page-title-main">Warp and weft</span> Two constituent threads of woven cloth

In the manufacture of cloth, warp and weft are the two basic components in weaving to transform thread and yarn into textile fabrics. The vertical warp yarns are held stationary in tension on a loom (frame) while the horizontal weft is drawn through the warp thread. In the terminology of weaving, each warp thread is called a warp end ; a pick is a single weft thread that crosses the warp thread.

<span class="mw-page-title-main">Flying shuttle</span> Weaving tool

The flying shuttle is a type of weaving shuttle. It was a pivotal advancement in the mechanisation of weaving during the initial stages of the Industrial Revolution, and facilitated the weaving of considerably broader fabrics, enabling the production of wider textiles. Moreover, its mechanical implementation paved the way for the introduction of automatic machine looms.

A shuttle is a tool designed to neatly and compactly store a holder that carries the thread of the weft yarn while weaving with a loom. Shuttles are thrown or passed back and forth through the shed, between the yarn threads of the warp in order to weave in the weft.

<span class="mw-page-title-main">Textile manufacturing</span> The industry which produces textiles

Textile manufacturing is a major industry. It is largely based on the conversion of fibre into yarn, then yarn into fabric. These are then dyed or printed, fabricated into cloth which is then converted into useful goods such as clothing, household items, upholstery and various industrial products.

<span class="mw-page-title-main">Paithani</span> Variety of sari

Paithani is a variety of sari, named after the Paithan town in Aurangabad district from state of Maharashtra in India where the sari was first made by hand. Present day Yeola town in Nashik, Maharashtra is the largest manufacturer of Paithani.

<span class="mw-page-title-main">Pile weave</span>

Pile weave is a form of textile created by weaving. This type of fabric is characterized by a pile—a looped or tufted surface that extends above the initial foundation, or 'ground' weave. The pile is formed by supplemental yarn running in the direction of the length of the fabric or the width of the fabric. Pile weaves include velvet and corduroy fabrics and machine-woven Berber carpets.

<span class="mw-page-title-main">Selvage</span> Narrow edge of a woven fabric parallel to its length

A selvage or selvedge is a "self-finished" edge of a piece of fabric which keeps it from unraveling and fraying. The term "self-finished" means that the edge does not require additional finishing work, such as hem or bias tape, to prevent fraying.

The manufacture of textiles is one of the oldest of human technologies. To make textiles, the first requirement is a source of fiber from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving, which turns yarn into cloth. The machine used for weaving is the loom. For decoration, the process of colouring yarn or the finished material is dyeing. For more information of the various steps, see textile manufacturing.

<span class="mw-page-title-main">Shed (weaving)</span>

In weaving, the shed is the temporary separation between upper and lower warp yarns through which the weft is woven. The shed is created to make it easy to interlace the weft into the warp and thus create woven fabric. Most types of looms have some sort of device which separates some of the warp threads from the others. This separation is called the shed, and allows for a shuttle carrying the weft thread to move through the shed perpendicular to the warp threads. Which threads are raised and which are lowered are changed after each pass of the shuttle.

Band weaving refers to the hand production of narrow woven fabric. This fabric may be called tape, band, inkle, strap, belt, back strap, trim, and more. It can be accomplished on a variety of types of looms, including inkle, band, tape, backstrap, and rigid heddle looms. Hole and slot heddles are also designed to weave bands. Depending on which loom is used, the material could be warp-faced or a balanced weave.

Textile manufacturing is one of the oldest human activities. The oldest known textiles date back to about 5000 B.C. In order to make textiles, the first requirement is a source of fibre from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving to create cloth. The machine used for weaving is the loom. Cloth is finished by what are described as wet process to become fabric. The fabric may be dyed, printed or decorated by embroidering with coloured yarns.

<span class="mw-page-title-main">Bradford Industrial Museum</span> Industrial museum, Mill museum, Textile museum, in Eccleshill, Bradford

Bradford Industrial Museum, established 1974 in Moorside Mills, Eccleshill, Bradford, United Kingdom, specializes in relics of local industry, especially printing and textile machinery, kept in working condition for regular demonstrations to the public. There is a Horse Emporium in the old canteen block plus a shop in the mill, and entry is free of charge.

An air-jet loom is a shuttleless loom that uses a jet of air to propel the weft yarn through the warp shed. It is one of two types of fluid-jet looms, the other being a water-jet loom, which was developed previously. Fluid-jet looms can operate at a faster speed than predecessor looms such as rapier looms, but they are not as common. The machinery used in fluid-jet weaving consists of a main nozzle, auxiliary nozzles or relay nozzles, and a profile reed.

References

  1. "Rapier Looms - Rapier Looms Weaving and Flexible Rapier Looms". www.rapierloom.in. Retrieved 2016-07-07.
  2. Weave Tech, India
  3. zARDADKHANY, 19mohamad97. "Recent Developments in Rapier Weaving Machines in Textiles".{{cite journal}}: Cite journal requires |journal= (help)CS1 maint: numeric names: authors list (link)
  4. Tumer, S.T. (February 29, 1988). "Filling Insertion by Rapier: A Kinematic Model". Textile Research Journal. 58 (12): 726–734. doi:10.1177/004051758805801207. S2CID   137878005 . Retrieved July 7, 2016.
  5. Adanur, Sabit (May 1991). "Analysis of Yarn Tension in Air-Jet Filling Insertion". Textile Research Journal. 61 (5): 259–266. doi:10.1177/004051759106100503. S2CID   138198389.