In mathematics, the Fredholm alternative, named after Ivar Fredholm, is one of Fredholm's theorems and is a result in Fredholm theory. It may be expressed in several ways, as a theorem of linear algebra, a theorem of integral equations, or as a theorem on Fredholm operators. Part of the result states that a non-zero complex number in the spectrum of a compact operator is an eigenvalue.
If V is an n-dimensional vector space and is a linear transformation, then exactly one of the following holds:
A more elementary formulation, in terms of matrices, is as follows. Given an m×n matrix A and a m×1 column vector b, exactly one of the following must hold:
In other words, Ax = b has a solution if and only if for any y such that ATy = 0, it follows that yTb = 0 .
Let be an integral kernel, and consider the homogeneous equation, the Fredholm integral equation,
and the inhomogeneous equation
The Fredholm alternative is the statement that, for every non-zero fixed complex number either the first equation has a non-trivial solution, or the second equation has a solution for all .
A sufficient condition for this statement to be true is for to be square integrable on the rectangle (where a and/or b may be minus or plus infinity). The integral operator defined by such a K is called a Hilbert–Schmidt integral operator.
Results about Fredholm operators generalize these results to complete normed vector spaces of infinite dimensions; that is, Banach spaces.
The integral equation can be reformulated in terms of operator notation as follows. Write (somewhat informally)
to mean
with the Dirac delta function, considered as a distribution, or generalized function, in two variables. Then by convolution, induces a linear operator acting on a Banach space of functions
given by
with given by
In this language, the Fredholm alternative for integral equations is seen to be analogous to the Fredholm alternative for finite-dimensional linear algebra.
The operator given by convolution with an kernel, as above, is known as a Hilbert–Schmidt integral operator. Such operators are always compact. More generally, the Fredholm alternative is valid when is any compact operator. The Fredholm alternative may be restated in the following form: a nonzero either is an eigenvalue of or lies in the domain of the resolvent
The Fredholm alternative can be applied to solving linear elliptic boundary value problems. The basic result is: if the equation and the appropriate Banach spaces have been set up correctly, then either
The argument goes as follows. A typical simple-to-understand elliptic operator L would be the Laplacian plus some lower order terms. Combined with suitable boundary conditions and expressed on a suitable Banach space X (which encodes both the boundary conditions and the desired regularity of the solution), L becomes an unbounded operator from X to itself, and one attempts to solve
where f ∈ X is some function serving as data for which we want a solution. The Fredholm alternative, together with the theory of elliptic equations, will enable us to organize the solutions of this equation.
A concrete example would be an elliptic boundary-value problem like
supplemented with the boundary condition
where Ω ⊆ Rn is a bounded open set with smooth boundary and h(x) is a fixed coefficient function (a potential, in the case of a Schrödinger operator). The function f ∈ X is the variable data for which we wish to solve the equation. Here one would take X to be the space L2(Ω) of all square-integrable functions on Ω, and dom(L) is then the Sobolev space W2,2(Ω) ∩ W1,2
0(Ω), which amounts to the set of all square-integrable functions on Ω whose weak first and second derivatives exist and are square-integrable, and which satisfy a zero boundary condition on ∂Ω.
If X has been selected correctly (as it has in this example), then for μ0 >> 0 the operator L + μ0 is positive, and then employing elliptic estimates, one can prove that L + μ0 : dom(L) → X is a bijection, and its inverse is a compact, everywhere-defined operator K from X to X, with image equal to dom(L). We fix one such μ0, but its value is not important as it is only a tool.
We may then transform the Fredholm alternative, stated above for compact operators, into a statement about the solvability of the boundary-value problem (*)–(**). The Fredholm alternative, as stated above, asserts:
Let us explore the two alternatives as they play out for the boundary-value problem. Suppose λ ≠ 0. Then either
(A) λ is an eigenvalue of K ⇔ there is a solution h ∈ dom(L) of (L + μ0) h = λ−1h ⇔ –μ0+λ−1 is an eigenvalue of L.
(B) The operator K − λ : X → X is a bijection ⇔ (K − λ) (L + μ0) = Id − λ (L + μ0) : dom(L) → X is a bijection ⇔ L + μ0 − λ−1 : dom(L) → X is a bijection.
Replacing -μ0+λ−1 by λ, and treating the case λ = −μ0 separately, this yields the following Fredholm alternative for an elliptic boundary-value problem:
The latter function u solves the boundary-value problem (*)–(**) introduced above. This is the dichotomy that was claimed in (1)–(2) above. By the spectral theorem for compact operators, one also obtains that the set of λ for which the solvability fails is a discrete subset of R (the eigenvalues of L). The eigenvalues’ associated eigenfunctions can be thought of as "resonances" that block the solvability of the equation.
In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.
In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as
In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive-definite kernel.
In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.
In mathematics, the Fredholm integral equation is an integral equation whose solution gives rise to Fredholm theory, the study of Fredholm kernels and Fredholm operators. The integral equation was studied by Ivar Fredholm. A useful method to solve such equations, the Adomian decomposition method, is due to George Adomian.
In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form:
In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form:
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.
In functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of . Such an operator is necessarily a bounded operator, and so continuous. Some authors require that are Banach, but the definition can be extended to more general spaces.
In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.
In mathematics, Fredholm's theorems are a set of celebrated results of Ivar Fredholm in the Fredholm theory of integral equations. There are several closely related theorems, which may be stated in terms of integral equations, in terms of linear algebra, or in terms of the Fredholm operator on Banach spaces.
In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature, such that an initial unit of heat energy is placed at a point at time t = 0.
In mathematics, Fredholm theory is a theory of integral equations. In the narrowest sense, Fredholm theory concerns itself with the solution of the Fredholm integral equation. In a broader sense, the abstract structure of Fredholm's theory is given in terms of the spectral theory of Fredholm operators and Fredholm kernels on Hilbert space. The theory is named in honour of Erik Ivar Fredholm.
In mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the stable state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on.
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
In the finite element method for the numerical solution of elliptic partial differential equations, the stiffness matrix is a matrix that represents the system of linear equations that must be solved in order to ascertain an approximate solution to the differential equation.
In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point, in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals.
In mathematics, Sobolev spaces for planar domains are one of the principal techniques used in the theory of partial differential equations for solving the Dirichlet and Neumann boundary value problems for the Laplacian in a bounded domain in the plane with smooth boundary. The methods use the theory of bounded operators on Hilbert space. They can be used to deduce regularity properties of solutions and to solve the corresponding eigenvalue problems.
In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied. The theory is particularly simple in two dimensions—the case treated in detail in this article—where it is related to complex function theory, the conjugate Beurling transform or complex Hilbert transform and the Fredholm eigenvalues of bounded planar domains.