Galactose-6-phosphate isomerase

Last updated
galactose-6-phosphate isomerase
Identifiers
EC no. 5.3.1.26
CAS no. 39433-98-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a galactose-6-phosphate isomerase (EC 5.3.1.26) is an enzyme that catalyzes the chemical reaction

D-galactose 6-phosphate D-tagatose 6-phosphate

Hence, this enzyme has one substrate, D-galactose 6-phosphate, and one product, D-tagatose 6-phosphate.

This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ketoses. The systematic name of this enzyme class is D-galactose-6-phosphate aldose-ketose-isomerase. This enzyme participates in galactose metabolism.

Related Research Articles

<span class="mw-page-title-main">Galactosemia</span> Medical condition

Galactosemia is a rare genetic metabolic disorder that affects an individual's ability to metabolize the sugar galactose properly. Galactosemia follows an autosomal recessive mode of inheritance that confers a deficiency in an enzyme responsible for adequate galactose degradation.

Isomerases are a general class of enzymes that convert a molecule from one isomer to another. Isomerases facilitate intramolecular rearrangements in which bonds are broken and formed. The general form of such a reaction is as follows:

<span class="mw-page-title-main">Galactokinase</span>

Galactokinase is an enzyme (phosphotransferase) that facilitates the phosphorylation of α-D-galactose to galactose 1-phosphate at the expense of one molecule of ATP. Galactokinase catalyzes the second step of the Leloir pathway, a metabolic pathway found in most organisms for the catabolism of α-D-galactose to glucose 1-phosphate. First isolated from mammalian liver, galactokinase has been studied extensively in yeast, archaea, plants, and humans.

<i>Lactococcus lactis</i> Species of bacterium

Lactococcus lactis is a gram-positive bacterium used extensively in the production of buttermilk and cheese, but has also become famous as the first genetically modified organism to be used alive for the treatment of human disease. L. lactis cells are cocci that group in pairs and short chains, and, depending on growth conditions, appear ovoid with a typical length of 0.5 - 1.5 µm. L. lactis does not produce spores (nonsporulating) and are not motile (nonmotile). They have a homofermentative metabolism, meaning they produce lactic acid from sugars. They've also been reported to produce exclusive L-(+)-lactic acid. However, reported D-(−)-lactic acid can be produced when cultured at low pH. The capability to produce lactic acid is one of the reasons why L. lactis is one of the most important microorganisms in the dairy industry. Based on its history in food fermentation, L. lactis has generally recognized as safe (GRAS) status, with few case reports of it being an opportunistic pathogen.

In carbohydrate chemistry, the Lobry de Bruyn–Van Ekenstein transformation also known as the Lobry de Bruyn–Alberda van Ekenstein transformation is the base or acid catalyzed transformation of an aldose into the ketose isomer or vice versa, with a tautomeric enediol as reaction intermediate. Ketoses may be transformed into 3-ketoses, etcetera. The enediol is also an intermediate for the epimerization of an aldose or ketose.

<span class="mw-page-title-main">Aldose reductase</span> Enzyme

In enzymology, aldose reductase is a cytosolic NADPH-dependent oxidoreductase that catalyzes the reduction of a variety of aldehydes and carbonyls, including monosaccharides. It is primarily known for catalyzing the reduction of glucose to sorbitol, the first step in polyol pathway of glucose metabolism.

<span class="mw-page-title-main">Galactose epimerase deficiency</span> Medical condition

Galactose epimerase deficiency, also known as GALE deficiency, Galactosemia III and UDP-galactose-4-epimerase deficiency, is a rare, autosomal recessive form of galactosemia associated with a deficiency of the enzyme galactose epimerase.

In enzymology, an arabinose-5-phosphate isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, an arabinose isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a corticosteroid side-chain-isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a D-lyxose ketol-isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a glucuronate isomerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">L-arabinose isomerase</span>

In enzymology, a L-arabinose isomerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylanthranilate isomerase</span> Enzyme involved in tryptophan synthesis

In enzymology, a phosphoribosylanthranilate isomerase (PRAI) is an enzyme that catalyzes the third step of the synthesis of the amino acid tryptophan.

In enzymology, a ribose isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a S-methyl-5-thioribose-1-phosphate isomerase is an enzyme that catalyzes the chemical reaction

The enzyme tagatose-bisphosphate aldolase catalyzes the chemical reaction

In enzymology, a trehalose 6-phosphate phosphorylase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UDP-glucose—hexose-1-phosphate uridylyltransferase</span> Class of enzymes

In enzymology, an UDP-glucose—hexose-1-phosphate uridylyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Xylose isomerase</span> Class of enzymes

In enzymology, a xylose isomerase is an enzyme that catalyzes the interconversion of D-xylose and D-xylulose. This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ketoses. The isomerase has now been observed in nearly a hundred species of bacteria. Xylose-isomerases are also commonly called fructose-isomerases due to their ability to interconvert glucose and fructose. The systematic name of this enzyme class is D-xylose aldose-ketose-isomerase. Other names in common use include D-xylose isomerase, D-xylose ketoisomerase, and D-xylose ketol-isomerase.

References