HD 141937

Last updated
HD 141937
Observation data
Epoch J2000       Equinox J2000
Constellation Libra
Right ascension 15h 52m 17.54740s [1]
Declination −18° 26 09.8432 [1]
Apparent magnitude  (V)7.25 [2]
Characteristics
Spectral type G1V [3]
B−V color index +0.628±0.002 [2]
Astrometry
Radial velocity (Rv)−3.36±0.14 [1] km/s
Proper motion (μ)RA: +97.862 mas/yr [1]
Dec.: +22.363 mas/yr [1]
Parallax (π)30.5637±0.0898  mas [1]
Distance 106.7 ± 0.3  ly
(32.72 ± 0.10  pc)
Absolute magnitude  (MV)4.71 [2]
Details
Mass 1.03 [4]   M
Radius 1.05 [5]   R
Luminosity 1.202±0.003 [5]   L
Surface gravity (log g)4.44 [4]   cgs
Temperature 5,890+15
−30
[5]   K
Metallicity [Fe/H]+0.10±0.01 [2]   dex
Rotational velocity (v sin i)6.0 [2]  km/s
Age 3.82 [4]   Gyr
Other designations
BD−17°4442, HD 141937, HIP 77740, SAO 159551 [6]
Database references
SIMBAD data
Exoplanet Archive data

HD 141937 is a star in the southern zodiac constellation of Libra, positioned a couple of degrees to the north of Lambda Librae. It is a yellow-hued star with an apparent visual magnitude of 7.25, [2] which means it is too faint to be seen with the naked eye. This object is located at a distance of 106.7  light-years from the Sun based on parallax, but is drifting closer with a radial velocity of −3.4 km/s. [1] It has an absolute magnitude of 4.71. [2]

This is a G-type main-sequence star with a stellar classification of G1V. [3] It is a solar-type star with slightly higher mass and radius compared to the Sun. The metallicity is higher than solar. It is an estimated 3.8 [4]  billion years old and is spinning with a projected rotational velocity of 6 km/s. [7] The star is radiating 1.2 times the luminosity of the Sun from its photosphere at an effective temperature of 5,890 K. [5]

The star has a substellar companion (HD 141937 b), either a planet or a brown dwarf, announced in April 2001 by the European Southern Observatory. [8] It has a minimum mass of 9.7 MJ. [9] In 2020, the inclination of the orbit was measured via astrometry, indicating a true mass of 27.4 MJ, which would make it a brown dwarf. [10] However, a more recent astrometric study in 2026 found an edge-on orbit, indicating a planetary mass. [11] A 662-day orbit places the orbital distance 1.5 times farther away from the star as Earth is from the Sun, with a high eccentricity of 0.46. [11]

The HD 141937 planetary system [11]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b11.3±0.5  MJ 1.54±0.02662.37±0.090.460±0.00490.00+6.75
−6.76
°

See also

References

  1. 1 2 3 4 5 6 7 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  2. 1 2 3 4 5 6 7 Anderson, E.; Francis, Ch. (2012). "XHIP: An extended hipparcos compilation". Astronomy Letters. 38 (5): 331. arXiv: 1108.4971 . Bibcode:2012AstL...38..331A. doi:10.1134/S1063773712050015. S2CID   119257644.
  3. 1 2 Gray, R. O.; et al. (July 2006). "Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 parsecs: The Northern Sample I". The Astronomical Journal. 132 (1): 161–170. arXiv: astro-ph/0603770 . Bibcode:2006AJ....132..161G. doi:10.1086/504637. S2CID   119476992.
  4. 1 2 3 4 Luck, R. Earle (January 2017). "Abundances in the Local Region II: F, G, and K Dwarfs and Subgiants". The Astronomical Journal. 153 (1): 19. arXiv: 1611.02897 . Bibcode:2017AJ....153...21L. doi: 10.3847/1538-3881/153/1/21 . S2CID   119511744. 21.
  5. 1 2 3 4 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics . 616. A1. arXiv: 1804.09365 . Bibcode: 2018A&A...616A...1G . doi: 10.1051/0004-6361/201833051 . Gaia DR2 record for this source at VizieR.
  6. "HD 117207". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2018-07-23.
  7. Delgado Mena, E.; et al. (February 2014). "Li depletion in solar analogues with exoplanets. Extending the sample". Astronomy & Astrophysics. 562: 17. arXiv: 1311.6414 . Bibcode:2014A&A...562A..92D. doi:10.1051/0004-6361/201321493. S2CID   56104807. A92.
  8. "Exoplanets: The Hunt Continues!" (Press release). Garching, Germany: European Southern Observatory. April 4, 2001. Retrieved December 29, 2012.
  9. Udry, S.; et al. (2002). "The CORALIE survey for southern extra-solar planets VIII. The very low-mass companions of HD141937, HD162020, HD168443, HD202206: brown dwarfs or superplanets?". Astronomy and Astrophysics . 390 (1): 267–279. arXiv: astro-ph/0202458 . Bibcode:2002A&A...390..267U. doi:10.1051/0004-6361:20020685. S2CID   9389274.
  10. Kiefer, F.; et al. (January 2021). "Determining the true mass of radial-velocity exoplanets with Gaia. Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets". Astronomy & Astrophysics. 645 A7. arXiv: 2009.14164 . Bibcode: 2021A&A...645A...7K . doi: 10.1051/0004-6361/202039168 . S2CID   221995447.
  11. 1 2 3 Piccinini, G.; Petralia, A.; et al. (January 2026). "True Masses using RV data with Hipparcos and Gaia Astrometry". Astronomy & Astrophysics . arXiv: 2601.09401 .