Hydroxynitrilase

Last updated
acetone-cyanhydrin lyase
Identifiers
EC no. 4.1.2.37
CAS no. 112567-89-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a hydroxynitrilase (EC 4.1.2.37) is an enzyme that catalyzes the chemical reaction

acetone cyanohydrin cyanide + acetone

Hence, this enzyme has one substrate, acetone cyanohydrin, and two products, cyanide and acetone.

This enzyme belongs to the family of lyases, specifically the aldehyde-lyases, which cleave carbon-carbon bonds. The systematic name of this enzyme class is acetone-cyanohydrin acetone-lyase (cyanide-forming). Other names in common use include alpha-hydroxynitrile lyase, hydroxynitrile lyase, acetone-cyanhydrin lyase [mis-spelt], acetone-cyanohydrin acetone-lyase, oxynitrilase, 2-hydroxyisobutyronitrile acetone-lyase, 2-hydroxyisobutyronitrile acetone-lyase (cyanide-forming), and acetone-cyanohydrin lyase.

Related Research Articles

<span class="mw-page-title-main">Cyanide</span> Any molecule with a cyano group (–C≡N)

In chemistry, a cyanide is a chemical compound that contains a C≡N functional group. This group, known as the cyano group, consists of a carbon atom triple-bonded to a nitrogen atom.

<span class="mw-page-title-main">Cyanohydrin</span> Functional group in organic chemistry

In organic chemistry, a cyanohydrin or hydroxynitrile is a functional group found in organic compounds in which a cyano and a hydroxy group are attached to the same carbon atom. The general formula is R2C(OH)CN, where R is H, alkyl, or aryl. Cyanohydrins are industrially important precursors to carboxylic acids and some amino acids. Cyanohydrins can be formed by the cyanohydrin reaction, which involves treating a ketone or an aldehyde with hydrogen cyanide (HCN) in the presence of excess amounts of sodium cyanide (NaCN) as a catalyst:

In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

In organic chemistry, hydrocyanation is a process for conversion of alkenes to nitriles. The reaction involves the addition of hydrogen cyanide and requires a catalyst. This conversion is conducted on an industrial scale for the production of precursors to nylon.

A cyanohydrin reaction is an organic chemical reaction in which an aldehyde or ketone reacts with a cyanide anion or a nitrile to form a cyanohydrin. This nucleophilic addition is a reversible reaction but with aliphatic carbonyl compounds equilibrium is in favor of the reaction products. The cyanide source can be potassium cyanide, sodium cyanide or trimethylsilyl cyanide. With aromatic aldehydes such as benzaldehyde, the benzoin condensation is a competing reaction. The reaction is used in carbohydrate chemistry as a chain extension method for example that of D-xylose.

<span class="mw-page-title-main">Trimethylsilyl cyanide</span> Chemical compound

Trimethylsilyl cyanide is the chemical compound with the formula (CH3)3SiCN. This volatile liquid consists of a cyanide group, that is CN, attached to a trimethylsilyl group. The molecule is used in organic synthesis as the equivalent of hydrogen cyanide. It is prepared by the reaction of lithium cyanide and trimethylsilyl chloride:

<span class="mw-page-title-main">Linamarin</span> Chemical compound

Linamarin is a cyanogenic glucoside found in the leaves and roots of plants such as cassava, lima beans, and flax. It is a glucoside of acetone cyanohydrin. Upon exposure to enzymes and gut flora in the human intestine, linamarin and its methylated relative lotaustralin can decompose to the toxic chemical hydrogen cyanide; hence food uses of plants that contain significant quantities of linamarin require extensive preparation and detoxification. Ingested and absorbed linamarin is rapidly excreted in the urine and the glucoside itself does not appear to be acutely toxic. Consumption of cassava products with low levels of linamarin is widespread in the low-land tropics. Ingestion of food prepared from insufficiently processed cassava roots with high linamarin levels has been associated with dietary toxicity, particularly with the upper motor neuron disease known as konzo to the African populations in which it was first described by Trolli and later through the research network initiated by Hans Rosling. However, the toxicity is believed to be induced by ingestion of acetone cyanohydrin, the breakdown product of linamarin. Dietary exposure to linamarin has also been reported as a risk factor in developing glucose intolerance and diabetes, although studies in experimental animals have been inconsistent in reproducing this effect and may indicate that the primary effect is in aggravating existing conditions rather than inducing diabetes on its own.

<span class="mw-page-title-main">Lotaustralin</span> Chemical compound

Lotaustralin is a cyanogenic glucoside found in small amounts in Fabaceae austral trefoil, cassava, lima bean, roseroot and white clover, among other plants. Lotaustralin is the glucoside of methyl ethyl ketone cyanohydrin and is structurally related to linamarin, the acetone cyanohydrin glucoside also found in these plants. Both lotaustralin and linamarin may be hydrolyzed by the enzyme linamarase to form glucose and a precursor to the toxic compound hydrogen cyanide.

Acetone cyanohydrin (ACH) is an organic compound used in the production of methyl methacrylate, the monomer of the transparent plastic polymethyl methacrylate (PMMA), also known as acrylic. It liberates hydrogen cyanide easily, so it is used as a source of such. For this reason, this cyanohydrin is also highly toxic.

<span class="mw-page-title-main">Acetoacetate decarboxylase</span> Enzyme

Acetoacetate decarboxylase is an enzyme involved in both the ketone body production pathway in humans and other mammals, and solventogenesis in bacteria. Acetoacetate decarboxylase plays a key role in solvent production by catalyzing the decarboxylation of acetoacetate, yielding acetone and carbon dioxide.

The enzyme L-3-cyanoalanine synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Phenylalanine ammonia-lyase</span>

The enzyme phenylalanine ammonia lyase (EC 4.3.1.24) catalyzes the conversion of L-phenylalanine to ammonia and trans-cinnamic acid.:

<span class="mw-page-title-main">Aminocarboxymuconate-semialdehyde decarboxylase</span>

The enzyme aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) catalyzes the chemical reaction

The enzyme hydroxymandelonitrile lyase catalyzes the chemical reaction

<span class="mw-page-title-main">Mandelonitrile lyase</span>

The enzyme (R)-mandelonitrile lyase (EC 4.1.2.10, (R)-HNL, (R)-oxynitrilase, (R)-hydroxynitrile lyase) catalyzes the chemical reaction

<span class="mw-page-title-main">Tryptophanase</span> Enzyme that converts tryptophan into indole

The enzyme tryptophanase (EC 4.1.99.1) catalyzes the chemical reaction

The enzyme 3-cyanoalanine hydratase (EC 4.2.1.65) catalyzes the chemical reaction

The enzyme cyanide hydratase (EC 4.2.1.66) catalyzes the chemical reaction

Aliphatic (R)-hydroxynitrile lyase (EC 4.1.2.46, (R)-HNL, (R)-oxynitrilase, (R)-hydroxynitrile lyase, LuHNL) is an enzyme with systematic name (2R)-2-hydroxy-2-methylbutanenitrile butan-2-one-lyase (cyanide forming). This enzyme catalyses the following chemical reaction:

(S)-hydroxynitrile lyase (EC 4.1.2.47, (S)-cyanohydrin producing hydroxynitrile lyase, (S)-oxynitrilase, (S)-HbHNL, (S)-MeHNL, hydroxynitrile lyase, oxynitrilase, HbHNL, MeHNL, (S)-selective hydroxynitrile lyase, (S)-cyanohydrin carbonyl-lyase (cyanide forming), hydroxynitrilase) is an enzyme with systematic name (S)-cyanohydrin lyase (cyanide forming). This enzyme catalyses the interconversion between cyanohydrins and the carbonyl compounds derived from the cyanohydrin with free cyanide, as in the following two chemical reactions:

References