Iatrogenic anemia

Last updated
Iatrogenic anemia
Other namesNosocomial anemia, hospital-acquired anemia
Vacutainer blood bottles.jpg
Excessive blood draws are a major cause of iatrogenic anemia. [1]
CausesRepeated blood draws; surgical and medical procedures; intravenous fluid administration [2]
PreventionDrawing smaller volumes of blood; using blood conservation devices; limiting laboratory test ordering [1] [3]

Iatrogenic anemia, also known as nosocomial anemia or hospital-acquired anemia, is a condition in which a person develops anemia due to medical interventions, most frequently repeated blood draws. [1] [2] [4] Other factors that contribute to iatrogenic anemia include bleeding from medical procedures and dilution of the blood by intravenous fluids. [2] People may receive blood transfusions to treat iatrogenic anemia, which carries risks for complications like transfusion reactions and circulatory overload. [3] [5]

Contents

Incidence and cause

A 2013 study of over 400,000 people admitted to US hospitals found that 74% developed anemia at some point during their hospital stay. [5] Iatrogenic anemia is of particular concern in intensive care medicine, [6] :629 because people who are critically ill require frequent blood tests and have a higher risk of developing anemia due to lower hemoglobin levels and impaired production of red blood cells (erythropoesis) at baseline. The average intensive care unit (ICU) patient loses up to 660 mL of blood per week to laboratory testing. [3] For each day in the ICU, it is estimated that a person's hemoglobin level falls by 5 g/L (0.5 g/dL), 80% of which is due to phlebotomy. [7] :20 On the second day of admission to the ICU, more than 70% of adults exhibit anemia, over half of whom will go on to require a blood transfusion. [3]

In the neonatal intensive care unit (NICU), the issue is exacerbated by the patients' low body weight: it is estimated that during their first six weeks of life, infants in NICUs may lose 15−30% of their blood volume to blood draws. [3] [8] Premature babies often suffer from anemia of prematurity, which is caused by low production of erythropoietin (a hormone that stimulates red blood cell production) and the short lifespan of neonates' red blood cells, and is worsened by blood loss through phlebotomy. [9]

People who are receiving dialysis lose blood not only through sampling for laboratory tests, but from the dialysis process itself and from bleeding caused by accessing veins to attach the dialysis equipment. This iatrogenic anemia often occurs alongside the anemia caused by kidney disease. [6] :629

Another factor that contributes to anemia in hospitalized people is the use of intravenous fluids. Infusion with large volumes of intravenous fluids dilutes the blood, causing a decreased hemoglobin and hematocrit level. This is not a true anemia, as no red blood cells are lost and the body eventually compensates for the effects of the infusion. However, the decreased hemoglobin and hematocrit may lead to unnecessary transfusion. Blood loss through surgery and through medical procedures such as central line placement also play a role, as does the use of certain drugs which can suppress the bone marrow's ability to produce red blood cells. [2]

Complications

People who develop iatrogenic anemia spend a longer amount of time in the hospital and have an increased risk of mortality. They are also more likely to receive blood transfusions, [1] which carries risks for various conditions, including transfusion reactions, lung injury, circulatory overload and alloimmunization. [2] [3] After the initial development of anemia, further testing may be ordered to monitor and investigate the condition, which worsens the anemia and the attendant risks for complications. [1]

Prevention

The volume of blood needed for most laboratory tests is lower than the amount that is commonly drawn; a 2008 study found that only 9% of the blood in standard sized blood tubes was used for testing. Using smaller tubes for blood tests can decrease the risk of anemia, but it may increase the risk of laboratory errors. [3] Point-of-care testing, meaning testing performed at a patient's bedside rather than in a medical laboratory, typically uses much smaller blood volumes than conventional testing; [7] :20 however, as of 2019, there is insufficient evidence regarding the effects of point-of-care testing on iatrogenic anemia. The use of closed blood sampling devices, which return excess blood from blood draws or line flushes to the person's circulation, can decrease the amount of blood loss in hospitalized patients. [3] Strategies to decrease the amount of blood tests ordered, such as clinician education and auditing, or restricting test orders through the electronic health record, have also been investigated. [1]

Related Research Articles

<span class="mw-page-title-main">Anemia</span> Medical condition

Anemia or anaemia is a blood disorder in which the blood has a reduced ability to carry oxygen due to a lower than normal number of red blood cells, or a reduction in the amount of hemoglobin. When anemia comes on slowly, the symptoms are often vague, such as tiredness, weakness, shortness of breath, headaches, and a reduced ability to exercise. When anemia is acute, symptoms may include confusion, feeling like one is going to pass out, loss of consciousness, and increased thirst. Anemia must be significant before a person becomes noticeably pale. Symptoms of anemia depend on how quickly hemoglobin decreases. Additional symptoms may occur depending on the underlying cause. Preoperative anemia can increase the risk of needing a blood transfusion following surgery. Anemia can be temporary or long term and can range from mild to severe.

<span class="mw-page-title-main">Spherocytosis</span> Medical condition

Spherocytosis is the presence of spherocytes in the blood, i.e. erythrocytes that are sphere-shaped rather than bi-concave disk shaped as normal. Spherocytes are found in all hemolytic anemias to some degree. Hereditary spherocytosis and autoimmune hemolytic anemia are characterized by having only spherocytes.

<span class="mw-page-title-main">Complete blood count</span> Routine laboratory test of blood cells

A complete blood count (CBC), also known as a full blood count (FBC), is a set of medical laboratory tests that provide information about the cells in a person's blood. The CBC indicates the counts of white blood cells, red blood cells and platelets, the concentration of hemoglobin, and the hematocrit. The red blood cell indices, which indicate the average size and hemoglobin content of red blood cells, are also reported, and a white blood cell differential, which counts the different types of white blood cells, may be included.

<span class="mw-page-title-main">Hematocrit</span> Volume percentage of red blood cells in blood

The hematocrit, also known by several other names, is the volume percentage (vol%) of red blood cells (RBCs) in blood, measured as part of a blood test. The measurement depends on the number and size of red blood cells. It is normally 40.7–50.3% for males and 36.1–44.3% for females. It is a part of a person's complete blood count results, along with hemoglobin concentration, white blood cell count and platelet count.

<span class="mw-page-title-main">Polycythemia</span> Laboratory diagnosis of high hemoglobin content in blood

Polycythemia is a laboratory finding in which the hematocrit and/or hemoglobin concentration are increased in the blood. Polycythemia is sometimes called erythrocytosis, and there is significant overlap in the two findings, but the terms are not the same: polycythemia describes any increase in hematocrit and/or hemoglobin, while erythrocytosis describes an increase specifically in the number of red blood cells in the blood.

<span class="mw-page-title-main">Iron-deficiency anemia</span> Medical condition

Iron-deficiency anemia is anemia caused by a lack of iron. Anemia is defined as a decrease in the number of red blood cells or the amount of hemoglobin in the blood. When onset is slow, symptoms are often vague such as feeling tired, weak, short of breath, or having decreased ability to exercise. Anemia that comes on quickly often has more severe symptoms, including confusion, feeling like one is going to pass out or increased thirst. Anemia is typically significant before a person becomes noticeably pale. Children with iron deficiency anemia may have problems with growth and development. There may be additional symptoms depending on the underlying cause.

<span class="mw-page-title-main">Hemolytic disease of the newborn</span> Fetal and neonatal alloimmune blood condition

Hemolytic disease of the newborn, also known as hemolytic disease of the fetus and newborn, HDN, HDFN, or erythroblastosis foetalis, is an alloimmune condition that develops in a fetus at or around birth, when the IgG molecules produced by the mother pass through the placenta. Among these antibodies are some which attack antigens on the red blood cells in the fetal circulation, breaking down and destroying the cells. The fetus can develop reticulocytosis and anemia. The intensity of this fetal disease ranges from mild to very severe, and fetal death from heart failure can occur. When the disease is moderate or severe, many erythroblasts are present in the fetal blood, earning these forms of the disease the name erythroblastosis fetalis.

Hemolytic disease of the newborn (anti-Kell1) is the second most common cause of severe hemolytic disease of the newborn (HDN) after Rh disease. Anti-Kell1 is becoming relatively more important as prevention of Rh disease is also becoming more effective.

Hemolytic disease of the newborn (anti-Rhc) can range from a mild to a severe disease. It is the third most common cause of severe HDN. Rh disease is the most common and hemolytic disease of the newborn (anti-Kell) is the second most common cause of severe HDN. It occurs more commonly in women who are Rh D negative.

Epoetin alfa is a human erythropoietin produced in cell culture using recombinant DNA technology. Authorised by the European Medicines Agency on 28 August 2007, it stimulates erythropoiesis and is used to treat anemia, commonly associated with chronic kidney failure and cancer chemotherapy.

An exchange transfusion is a blood transfusion in which the patient's blood or components of it are exchanged with other blood or blood products. The patient's blood is removed and replaced by donated blood or blood components. This exchange transfusion can be performed manually or using a machine (apheresis).

Anemia of prematurity (AOP) refers to a form of anemia affecting preterm infants with decreased hematocrit. AOP is a normochromic, normocytic hypoproliferative anemia. The primary mechanism of AOP is a decrease in erythropoietin (EPO), a red blood cell growth factor.

Hemolytic disease of the newborn (anti-RhE) is caused by the anti-RhE antibody of the Rh blood group system. The anti-RhE antibody can be naturally occurring, or arise following immune sensitization after a blood transfusion or pregnancy.

Patient Blood Management (PBM) is a set of medical practices designed to optimise the care of patients who might need a blood transfusion. Patient blood management programs use an organized framework to improve blood health, thus increasing patient safety and quality of life, reducing costs, and improving clinical outcomes. Some strategies to accomplish this include ensuring that anemia is treated prior to a surgical operation, using surgical techniques that limit blood loss, and returning blood lost during surgery to the patient via intraoperative blood salvage.

Hemoglobin H Disease, also called alpha-thalassemia intermedia, is a disease affecting hemoglobin, the oxygen carrying molecule within red blood cells. It is a form of Alpha-thalassemia which most commonly occurs due to deletion of 3 out of 4 of the α-globin genes.

Neonates are defined as babies up to 28 days after birth. Most extremely preterm babies require at least one red cell transfusion; this is partly due to the amount of blood removed with blood samples compared to the baby's total blood volume and partly due to anemia of prematurity. Most transfusions are given as small volume top-up transfusions to increase the baby's hemoglobin above a certain pre-defined level, or because the baby is unwell due to the anemia. Possible side-effects of anemia in babies can be poor growth, lethargy and episodes of apnea. Exchange blood transfusion is used to treat a rapidly rising bilirubin that does not respond to treatment with phototherapy or intravenous immunoglobulin. This is usually due to hemolytic disease of the newborn, but may also be due to other causes, e.g., G6PD deficiency.

Anemia is a condition in which blood has a lower-than-normal amount of red blood cells or hemoglobin. Anemia in pregnancy is a decrease in the total red blood cells (RBCs) or hemoglobin in the blood during pregnancy. Anemia is an extremely common condition in pregnancy world-wide, conferring a number of health risks to mother and child. While anemia in pregnancy may be pathologic, in normal pregnancies, the increase in RBC mass is smaller than the increase in plasma volume, leading to a mild decrease in hemoglobin concentration referred to as physiologic anemia. Maternal signs and symptoms are usually non-specific, but can include: fatigue, pallor, dyspnea, palpitations, and dizziness. There are numerous well-known maternal consequences of anemia including: maternal cardiovascular strain, reduced physical and mental performance, reduced peripartum blood reserves, increased risk for peripartum blood product transfusion, and increased risk for maternal mortality.

An Intrauterine transfusion (IUT) is a procedure that provides blood to a fetus, most commonly through the umbilical cord. It is used in cases of severe fetal anemia, such as when fetal red blood cells are being destroyed by maternal antibodies. IUTs are performed by perinatologists at hospitals or specialized centers.

<span class="mw-page-title-main">Transfusion-dependent anemia</span>

Transfusion-dependent anemia is a form of anemia characterized by the need for continuous blood transfusion. It is a condition that results from various diseases, and is associated with decreased survival rates. Regular transfusion is required to reduce the symptoms of anemia by increasing functional red blood cells and hemoglobin count. Symptoms may vary based on the severity of the condition and the most common symptom is fatigue. Various diseases can lead to transfusion-dependent anemia, most notably myelodysplastic syndromes (MDS) and thalassemia. Due to the number of diseases that can cause transfusion-dependent anemia, diagnosing it is more complicated. Transfusion dependence occurs when an average of more than 2 units of blood transfused every 28 days is required over a period of at least 3 months. Myelodysplastic syndromes is often only diagnosed when patients become anemic, and transfusion-dependent thalassemia is diagnosed based on gene mutations. Screening for heterozygosity in the thalassemia gene is an option for early detection.

Hemolytic jaundice, also known as prehepatic jaundice, is a type of jaundice arising from hemolysis or excessive destruction of red blood cells, when the byproduct bilirubin is not excreted by the hepatic cells quickly enough. Unless the patient is concurrently affected by hepatic dysfunctions or is experiencing hepatocellular damage, the liver does not contribute to this type of jaundice.

References

  1. 1 2 3 4 5 6 Eaton, Kevin P.; Levy, Kathryn; Soong, Christine; Pahwa, Amit K.; Petrilli, Christopher; Ziemba, Justin B.; Cho, Hyung J.; Alban, Rodrigo; Blanck, Jaime F.; Parsons, Andrew S. (2017). "Evidence-Based Guidelines to Eliminate Repetitive Laboratory Testing". JAMA Internal Medicine. 177 (12): 1833–1839. doi:10.1001/jamainternmed.2017.5152. ISSN   2168-6106. PMID   29049500. S2CID   40475834.
  2. 1 2 3 4 5 Martin, Niels D.; Scantling, Dane (2015). "Hospital-Acquired Anemia". Journal of Infusion Nursing. 38 (5): 330–338. doi:10.1097/NAN.0000000000000121. ISSN   1533-1458. PMID   26339939. S2CID   30859103.
  3. 1 2 3 4 5 6 7 8 Whitehead, Nedra S.; Williams, Laurina O.; Meleth, Sreelatha; Kennedy, Sara M.; Ubaka-Blackmoore, Nneka; Geaghan, Sharon M.; Nichols, James H.; Carroll, Patrick; McEvoy, Michael T.; Gayken, Julie; Ernst, Dennis J.; Litwin, Christine; Epner, Paul; Taylor, Jennifer; Graber, Mark L. (2019). "Interventions to prevent iatrogenic anemia: a Laboratory Medicine Best Practices systematic review". Critical Care. 23 (1): 278. doi: 10.1186/s13054-019-2511-9 . ISSN   1364-8535. PMC   6688222 . PMID   31399052.
  4. Patricia O'Malley (17 August 2017). Hematologic Issues in Critical Care, an Issue of Critical Nursing Clinics. Elsevier Health Sciences. p. 285. ISBN   978-0-323-54549-5.
  5. 1 2 Koch, Colleen G.; Li, Liang; Sun, Zhiyuan; Hixson, Eric D.; Tang, Anne; Phillips, Shannon C.; Blackstone, Eugene H.; Henderson, J. Michael (2013). "Hospital-acquired anemia: Prevalence, outcomes, and healthcare implications". Journal of Hospital Medicine. 8 (9): 506–512. doi: 10.1002/jhm.2061 . ISSN   1553-5592. PMID   23873739.
  6. 1 2 Kenneth Kaushansky; Marshall A. Lichtman; Josef Prchal; Marcel M. Levi; Oliver W. Press; Linda J. Burns; Michael Caligiuri (23 December 2015). Williams Hematology, 9E. McGraw-Hill Education. ISBN   978-0-07-183301-1.
  7. 1 2 Toby L. Simon; Jeffrey McCullough; Edward L. Snyder; Bjarte G. Solheim; Ronald G. Strauss (15 March 2016). Rossi's Principles of Transfusion Medicine. John Wiley & Sons. ISBN   978-1-119-01301-3.
  8. Carroll, Patrick D.; Widness, John A. (2012). "Nonpharmacological, Blood Conservation Techniques for Preventing Neonatal Anemia—Effective and Promising Strategies for Reducing Transfusion". Seminars in Perinatology. 36 (4): 232–243. doi:10.1053/j.semperi.2012.04.003. ISSN   0146-0005. PMC   3703659 . PMID   22818543.
  9. Cassady, George (8 January 2016). "Anemia of Prematurity". Medscape . Archived from the original on 24 March 2019. Retrieved 22 May 2020.