Intercalation (chemistry)

Last updated

In chemistry, intercalation is the reversible inclusion or insertion of a molecule (or ion) into layered materials with layered structures. Examples are found in graphite and transition metal dichalcogenides. [1] [2]

Contents

Model of intercalation of potassium into graphite Potassium-graphite-xtal-3D-SF-A.png
Model of intercalation of potassium into graphite

Examples

Graphite

One famous intercalation host is graphite, which intercalates potassium as a guest. [3] Intercalation expands the van der Waals gap between sheets, which requires energy. Usually this energy is supplied by charge transfer between the guest and the host solid, i.e., redox. Two potassium graphite compounds are KC8 and KC24. Carbon fluorides (e.g., (CF)x and (C4F)) are prepared by reaction of fluorine with graphitic carbon. The color is greyish, white, or yellow. The bond between the carbon and fluorine atoms is covalent, thus fluorine is not intercalated.[ clarification needed ] Such materials have been considered as a cathode in various lithium batteries.

Diagram of intercalation of Li into a titanium disulfide cathode. One axis of the TiS2 crystal swells, and charge transfers from Li to Ti. LiTiS2IntercalationCartoon.png
Diagram of intercalation of Li into a titanium disulfide cathode. One axis of the TiS2 crystal swells, and charge transfers from Li to Ti.

Treating graphite with strong acids in the presence of oxidizing agents causes the graphite to oxidise. Graphite bisulfate, [C24]+[HSO4], is prepared by this approach using sulfuric acid and a little nitric acid or chromic acid. The analogous graphite perchlorate can be made similarly by reaction with perchloric acid.[ clarification needed ]

Lithium-ion batteries

One of the largest and most diverse uses of the intercalation process by the early 2020s is in lithium-ion electrochemical energy storage, in the batteries used in many handheld electronic devices, mobility devices, electric vehicles, and utility-scale battery electric storage stations.

By 2023, all commercial Li-ion cells use intercalation compounds as active materials, and most use them in both the cathode and anode within the battery physical structure. [4]

In 2012 three researchers, Goodenough, Yazami and Yoshino, received the 2012 IEEE Medal for Environmental and Safety Technologies for developing the intercalated lithium-ion battery and subsequently Goodenough, Whittingham, and Yoshino were awarded the 2019 Nobel Prize in Chemistry "for the development of lithium-ion batteries". [5]

Exfoliation

An extreme case of intercalation is the complete separation of the layers of the material. This process is called exfoliation. Typically aggressive conditions are required involving highly polar solvents and aggressive reagents. [6]

In biochemistry, intercalation is the insertion of molecules between the bases of DNA. This process is used as a method for analyzing DNA and it is also the basis of certain kinds of poisoning.

Clathrates are chemical substances consisting of a lattice that traps or contains molecules. Usually, clathrate compounds are polymeric and completely envelop the guest molecule. Inclusion compounds are often molecules, whereas clathrates are typically polymeric. Intercalation compounds are not 3-dimensional, unlike clathrate compounds. [7] According to IUPAC, clathrates are "Inclusion compounds in which the guest molecule is in a cage formed by the host molecule or by a lattice of host molecules." [8]

See also

Notes

  1. Stanley M Whittingham (2 December 2012). INTERCALATION CHEMISTRY. Elsevier. ISBN   978-0-323-14040-9 . Retrieved 18 May 2016.
  2. W. Müller-Warmuth; R. Schöllhorn (6 December 2012). Progress in Intercalation Research. Physics and Chemistry of Materials with Low-Dimensional Structures 17. Springer Science & Business Media. ISBN   978-94-011-0890-4 . Retrieved 18 May 2016.
  3. Wiberg, E.; Holleman, A.F.; Wiberg, N.; Eagleson, M.; Brewer, W.; Aylett, B.J. (2001). Inorganic Chemistry. Academic Press. p. 794. ISBN   978-0-12-352651-9 . Retrieved 12 March 2021.
  4. "Anode vs Cathode: What's the difference?". BioLogic. Retrieved 25 May 2023.
  5. "The Nobel Prize in Chemistry 2019". Nobel Foundation. Archived from the original on 8 December 2019. Retrieved 4 June 2023.
  6. Nicolosi, V.; et al. (2013). "Liquid Exfoliation of Layered Materials". Science . 340 (6139). doi:10.1126/science.1226419. hdl: 2262/69769 .
  7. Atwood, J. L. (2012). "Inclusion Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a14_119.
  8. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " clathrates ". doi : 10.1351/goldbook.C01097

Related Research Articles

<span class="mw-page-title-main">Electrode</span> Electrical conductor used to make contact with nonmetallic parts of a circuit

An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit. Electrodes are essential parts of batteries that can consist of a variety of materials depending on the type of battery.

<span class="mw-page-title-main">Graphite</span> Allotrope of carbon, mineral, substance

Graphite is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on a large scale for uses in pencils, lubricants, and electrodes. Under high pressures and temperatures it converts to diamond. It is a good conductor of both heat and electricity.

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: within the next 30 years, their volumetric energy density increased threefold while their cost dropped tenfold.

<span class="mw-page-title-main">John B. Goodenough</span> American materials scientist (1922–2023)

John Bannister Goodenough was an American materials scientist, a solid-state physicist, and a Nobel laureate in chemistry. From 1986 he was a professor of Mechanical, Materials Science, and Electrical Engineering at the University of Texas at Austin. He is credited with identifying the Goodenough–Kanamori rules of the sign of the magnetic superexchange in materials, with developing materials for computer random-access memory and with inventing cathode materials for lithium-ion batteries.

<span class="mw-page-title-main">Graphite intercalation compound</span>

In the area of solid state chemistry. graphite intercalation compounds are materials prepared by intercalation of diverse guests into graphite. The materials have the formula (guest)Cn where n can range from 8 to 40's. The distance between the carbon layers increases significantly upon insertion of the guests. Common guests are reducing agents such as alkali metals. Strong oxidants, such as arsenic pentafluoride also intercalate into graphite. Intercalation involves electron transfer into or out of the host. The properties of these materials differ from those of the parent graphite.

<span class="mw-page-title-main">Carbon monofluoride</span> Chemical compound

Carbon monofluoride (CF, CFx, or (CF)n), also called polycarbon monofluoride (PMF), polycarbon fluoride, poly(carbon monofluoride), and graphite fluoride, is a material formed by high-temperature reaction of fluorine gas with graphite, charcoal, or pyrolytic carbon powder. It is a highly hydrophobic microcrystalline powder. Its CAS number is 51311-17-2. In contrast to graphite intercalation compounds it is a covalent graphite compound.

<span class="mw-page-title-main">M. Stanley Whittingham</span> British-American chemist

Michael Stanley Whittingham is a British-American chemist. He is a professor of chemistry and director of both the Institute for Materials Research and the Materials Science and Engineering program at Binghamton University, State University of New York. He also serves as director of the Northeastern Center for Chemical Energy Storage (NECCES) of the U.S. Department of Energy at Binghamton. He was awarded the Nobel Prize in Chemistry in 2019 alongside Akira Yoshino and John B. Goodenough.

<span class="mw-page-title-main">Nanobatteries</span> Type of battery

Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.

<span class="mw-page-title-main">History of the battery</span> History of electricity source

Batteries provided the primary source of electricity before the development of electric generators and electrical grids around the end of the 19th century. Successive improvements in battery technology facilitated major electrical advances, from early scientific studies to the rise of telegraphs and telephones, eventually leading to portable computers, mobile phones, electric cars, and many other electrical devices.

<span class="mw-page-title-main">Lithium iron phosphate</span> Chemical compound

Lithium iron phosphate or lithium ferro-phosphate (LFP) is an inorganic compound with the formula LiFePO
4
. It is a gray, red-grey, brown or black solid that is insoluble in water. The material has attracted attention as a component of lithium iron phosphate batteries, a type of Li-ion battery. This battery chemistry is targeted for use in power tools, electric vehicles, solar energy installations and more recently large grid-scale energy storage.

<span class="mw-page-title-main">Lithium cobalt oxide</span> Chemical compound

Lithium cobalt oxide, sometimes called lithium cobaltate or lithium cobaltite, is a chemical compound with formula LiCoO
2
. The cobalt atoms are formally in the +3 oxidation state, hence the IUPAC name lithium cobalt(III) oxide.

<span class="mw-page-title-main">Rachid Yazami</span> Moroccan scientist

Rachid Yazami is a Moroccan scientist, engineer, and inventor. He is best known for his critical role in the development of the graphite anode for lithium-ion batteries and his research on fluoride ion batteries.

A potassium-ion battery or K-ion battery is a type of battery and analogue to lithium-ion batteries, using potassium ions for charge transfer instead of lithium ions. It was invented by the Iranian/American chemist Ali Eftekhari in 2004.

<span class="mw-page-title-main">Sodium-ion battery</span> Type of rechargeable battery

Sodium-ion batteries (NIBs, SIBs, or Na-ion batteries) are several types of rechargeable batteries, which use sodium ions (Na+) as its charge carriers. In some cases, its working principle and cell construction are similar to those of lithium-ion battery (LIB) types, but it replaces lithium with sodium as the intercalating ion. Sodium belongs to the same group in the periodic table as lithium and thus has similar chemical properties. Although, in some cases (such as aqueous Na-ion batteries) they are quite different from Li-ion batteries.

<span class="mw-page-title-main">Akira Yoshino</span> Japanese chemist

Akira Yoshino is a Japanese chemist. He is a fellow of Asahi Kasei Corporation and a professor at Meijo University in Nagoya. He created the first safe, production-viable lithium-ion battery, which became used widely in cellular phones and notebook computers. Yoshino was awarded the Nobel Prize in Chemistry in 2019 alongside M. Stanley Whittingham and John B. Goodenough.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

Magnesium batteries are batteries that utilize magnesium cations as charge carriers and possibly in the anode in electrochemical cells. Both non-rechargeable primary cell and rechargeable secondary cell chemistries have been investigated. Magnesium primary cell batteries have been commercialised and have found use as reserve and general use batteries.

<span class="mw-page-title-main">Lithium nickel manganese cobalt oxides</span> Lithium ion battery cathode material

Lithium nickel manganese cobalt oxides (abbreviated NMC, Li-NMC, LNMC, or NCM) are mixed metal oxides of lithium, nickel, manganese and cobalt with the general formula LiNixMnyCo1-x-yO2. These materials are commonly used in lithium-ion batteries for mobile devices and electric vehicles, acting as the positively charged cathode.

<span class="mw-page-title-main">History of the lithium-ion battery</span> Overview of the events of the development of lithium-ion battery

This is a history of the lithium-ion battery.

Exfoliation is a process that separates layered materials into nanomaterials by breaking the bonds between layers using mechanical, chemical, or thermal procedures.