Inventor's paradox

Last updated

The inventor's paradox is a phenomenon that occurs in seeking a solution to a given problem. Instead of solving a specific type of problem, which would seem intuitively easier, it can be easier to solve a more general problem, which covers the specifics of the sought-after solution. The inventor's paradox has been used to describe phenomena in mathematics, programming, and logic, as well as other areas that involve critical thinking.

Contents

History

In the book How to Solve It , Hungarian mathematician George Pólya introduces what he defines as the inventor's paradox:

The more ambitious plan may have more chances of success […] provided it is not based on a mere pretension but on some vision of the things beyond those immediately present. [1]

Or, in other words, to solve what one desires to solve, one may have to solve more than that in order to get a properly working flow of information. [2]

When solving a problem, the natural inclination typically is to remove as much excessive variability and produce limitations on the subject at hand as possible. Doing this can create unforeseen and intrinsically awkward parameters. [3] The goal is to find elegant and relatively simple solutions to broader problems, allowing for the ability to focus on the specific portion that was originally of concern. [4] There lies the inventor's paradox, that it is often significantly easier to find a general solution than a more specific one, since the general solution may naturally have a simpler algorithm and cleaner design, and typically can take less time to solve in comparison with a particular problem. [3]

Examples

Mathematics

The sum of numbers sequentially from 1-99:

This process, although not impossible to do in one's head, can prove to be difficult for most. However, the ability to generalize the problem exists, in this case by reordering the sequence to:

In this form, the example can be solved by most without the use of a calculator. [3] If one notices the problem's lowest and highest numbers (1 + 99) sum to 100, and that the next pair of lowest and highest numbers (2 + 98) also sum to 100, they'll also realize that all 49 numbers are matching pairs that each sum to 100, except for the single number in the middle, 50. The inventive mathematician will reformulate the problem in their mind as (49 * 100) + 50. Since 49 * 100 is easy to calculate by adding 2 zeros to the digit places of 49, they think: 4900 + 50. This is easy to add, because 50's maximum ordinal placement of the most significant digit (number 5 in the 2nd position "10s" place) is less than the minimum ordinal position of 4900's smallest significant digit (number 9 in the 3rd position "100s" place). So the solver simply replaces the last two 0s in 4900 with 50 to add them together, yielding the answer 4950. While the text description of this process seems complicated, each of the steps performed in the mind is simple and fast.

Although appearing in several applications, it can be easiest to explain through inspection of a relatively simple mathematical sequence. [5]

and further along in the sequence:

In allowing the sequence to expand to a point where the sum cannot be found quickly, we can simplify by finding that the sum of consecutive odd numbers follows: [2]

Programming

As an example in applying the same logic, it may be harder to solve a 25-case problem than it would be to solve an n-case problem, and then apply it to the case where n=25. [6] [ further explanation needed ]

Applications

This paradox has applications in writing efficient computer programs. It is intuitive to write programs that are specialized, but in practice it can become easier to develop more generalized procedures. [7] According to Bruce Tate, some of the most successful frameworks are simple generalizations of complex problems, and he says that Visual Basic, the Internet, and Apache web servers plug-ins are primary examples of such practice. [4] In the investigation of the semantics of language, many logicians find themselves facing this paradox. An example of application can be seen in the inherent concern of logicians with the conditions of truth within a sentence, and not, in fact, with the conditions under which a sentence can be truly asserted. [2] Additionally, the paradox has been shown to have applications in industry. [3]

See also

Related Research Articles

<span class="texhtml mvar" style="font-style:italic;">e</span> (mathematical constant) Constant value used in mathematics

The number e is a mathematical constant, approximately equal to 2.71828, that is the base of the natural logarithm.

In philosophy and logic, the classical liar paradox or liar's paradox or antinomy of the liar is the statement of a liar that they are lying: for instance, declaring that "I am lying". If the liar is indeed lying, then the liar is telling the truth, which means the liar just lied. In "this sentence is a lie" the paradox is strengthened in order to make it amenable to more rigorous logical analysis. It is still generally called the "liar paradox" although abstraction is made precisely from the liar making the statement. Trying to assign to this statement, the strengthened liar, a classical binary truth value leads to a contradiction.

Hilbert's paradox of the Grand Hotel is a thought experiment which illustrates a counterintuitive property of infinite sets. It is demonstrated that a fully occupied hotel with infinitely many rooms may still accommodate additional guests, even infinitely many of them, and this process may be repeated infinitely often. The idea was introduced by David Hilbert in a 1925 lecture "Über das Unendliche", reprinted in, and was popularized through George Gamow's 1947 book One Two Three... Infinity.

Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.

In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n; i.e., if there exists an integer x such that:

In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.

11 (eleven) is the natural number following 10 and preceding 12. It is the first repdigit. In English, it is the smallest positive integer whose name has three syllables.

<span class="mw-page-title-main">Square number</span> Product of an integer with itself

In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.

<i>How to Solve It</i> Book by George Pólya

How to Solve It (1945) is a small volume by mathematician George Pólya, describingmethods of problem solving.

<span class="mw-page-title-main">Cube (algebra)</span> Number raised to the third power

In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3.

Verbal arithmetic, also known as alphametics, cryptarithmetic, cryptarithm or word addition, is a type of mathematical game consisting of a mathematical equation among unknown numbers, whose digits are represented by letters of the alphabet. The goal is to identify the value of each letter. The name can be extended to puzzles that use non-alphabetic symbols instead of letters.

<span class="mw-page-title-main">Square pyramidal number</span> Number of stacked spheres in a pyramid

In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the number of stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broader topic of figurate numbers representing the numbers of points forming regular patterns within different shapes.

<span class="mw-page-title-main">Mental calculation</span> Arithmetical calculations using only the human brain

Mental calculation consists of arithmetical calculations using only the human brain, with no help from any supplies or devices such as a calculator. People may use mental calculation when computing tools are not available, when it is faster than other means of calculation, or even in a competitive context. Mental calculation often involves the use of specific techniques devised for specific types of problems. People with unusually high ability to perform mental calculations are called mental calculators or lightning calculators.

<span class="mw-page-title-main">Secretary problem</span> Mathematical problem involving optimal stopping theory

The secretary problem demonstrates a scenario involving optimal stopping theory that is studied extensively in the fields of applied probability, statistics, and decision theory. It is also known as the marriage problem, the sultan's dowry problem, the fussy suitor problem, the googol game, and the best choice problem. Its solution is also known as the 37% rule.

<span class="mw-page-title-main">Two envelopes problem</span> Puzzle in logic and mathematics

The two envelopes problem, also known as the exchange paradox, is a paradox in probability theory. It is of special interest in decision theory and for the Bayesian interpretation of probability theory. It is a variant of an older problem known as the necktie paradox. The problem is typically introduced by formulating a hypothetical challenge like the following example:

Imagine you are given two identical envelopes, each containing money. One contains twice as much as the other. You may pick one envelope and keep the money it contains. Having chosen an envelope at will, but before inspecting it, you are given the chance to switch envelopes. Should you switch?

In number theory and computer science, the partition problem, or number partitioning, is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S1 and S2 such that the sum of the numbers in S1 equals the sum of the numbers in S2. Although the partition problem is NP-complete, there is a pseudo-polynomial time dynamic programming solution, and there are heuristics that solve the problem in many instances, either optimally or approximately. For this reason, it has been called "the easiest hard problem".

In mathematics, a proof of impossibility is a proof that demonstrates that a particular problem cannot be solved as described in the claim, or that a particular set of problems cannot be solved in general. Such a case is also known as a negative proof, proof of an impossibility theorem, or negative result. Proofs of impossibility often are the resolutions to decades or centuries of work attempting to find a solution, eventually proving that there is no solution. Proving that something is impossible is usually much harder than the opposite task, as it is often necessary to develop a proof that works in general, rather than to just show a particular example. Impossibility theorems are usually expressible as negative existential propositions or universal propositions in logic.

5 (five) is a number, numeral and digit. It is the natural number, and cardinal number, following 4 and preceding 6, and is a prime number. It has garnered attention throughout history in part because distal extremities in humans typically contain five digits.

<span class="mw-page-title-main">Maximum subarray problem</span> Problem in computer science

In computer science, the maximum sum subarray problem, also known as the maximum segment sum problem, is the task of finding a contiguous subarray with the largest sum, within a given one-dimensional array A[1...n] of numbers. It can be solved in time and space.

In computer science, the largest differencing method is an algorithm for solving the partition problem and the multiway number partitioning. It is also called the Karmarkar–Karp algorithm after its inventors, Narendra Karmarkar and Richard M. Karp. It is often abbreviated as LDM.

References

  1. Pólya, p. 121.
  2. 1 2 3 Barwise p. 41.
  3. 1 2 3 4 Tate, et al., p. 110
  4. 1 2 Tate, et al., p. 111.
  5. Barwise p. 40.
  6. Bentley (2000), p. 29.
  7. Bentley (1982), p. 79.

Further reading