K2-3c

Last updated
K2-3c
Discovery [1]
Discovery site Kepler Space Observatory
Discovery date2015
Transit
Orbital characteristics [2]
0.1357+0.0023
−0.0022
  AU
Eccentricity 0.048+0.073
−0.035
24.646729+0.000044
−0.000042
  d
Inclination 89.84°+0.11°
−0.14°
−180°+100°
−110°
Semi-amplitude 0.88±0.28  m/s
Star K2-3
Physical characteristics [2]
Mean radius
1.582+0.057
−0.051
  R🜨
Mass 2.68±0.85  M🜨
Mean density
3.7±1.2  g/cm3
Temperature 371.8+3.8
−3.9
  K
(98.7 °C; 209.6 °F, equilibrium)

    K2-3c, also known as EPIC 201367065 c, is an exoplanet orbiting the red dwarf star K2-3 every 24 days. It is 143 light-years away. [3] It has a density of about 3.7 g/cm3, indicating that it could be an ocean world or a mini-Neptune. It is the second-smallest planet in the system by both radius and mass, with a mass almost three times that of Earth. [4]

    Related Research Articles

    <span class="mw-page-title-main">Ross 128</span> Small star in constellation of Virgo

    Ross 128 is a red dwarf in the equatorial zodiac constellation of Virgo, near β Virginis. The apparent magnitude of Ross 128 is 11.13, which is too faint to be seen with the unaided eye. Based upon parallax measurements, the distance of this star from Earth is 11.007 light-years, making it the twelfth closest stellar system to the Solar System. It was first cataloged in 1926 by American astronomer Frank Elmore Ross.

    <span class="mw-page-title-main">HD 164922</span> Star in the constellation Hercules

    HD 164922 is a seventh magnitude G-type main sequence star in the constellation of Hercules. To view it, binoculars or a telescope are necessary, as it is too faint to be visible to the naked eye. It is 71.7 light-years distant from the Earth. It will soon evolve away from the main-sequence and expand to become a red giant.

    Gliese 806 is a star in the northern constellation of Cygnus, located about a degree to the southeast of the bright star Deneb. It is invisible to the naked eye with an apparent visual magnitude of +10.79. The star is located at a distance of 39.3 light years from the Sun based on stellar parallax. It is drifting closer with a radial velocity of −24.6 km/s, and is predicted to come to within 30.1 light-years in ~198,600 years. The star hosts two known planetary companions.

    K2-3, also known as EPIC 201367065, is a red dwarf star with three known planets. It is on the borderline of being a late orange dwarf/K-type star, but because of its temperature, it is classified as a red dwarf.

    K2-3b, also known as EPIC 201367065 b, is an exoplanet orbiting the red dwarf K2-3 every 10 days. It is the largest and most massive planet of the K2-3 system, with about 2.1 times the radius of Earth and about 5 times the mass. Its density of about 3.1 g/cm3 may indicate a composition of almost entirely water, or a hydrogen envelope comprising about 0.7% of the planet's mass.

    <span class="mw-page-title-main">K2-3d</span> Mini-Neptune orbiting K2-3

    K2-3d, also known as EPIC 201367065 d, is a confirmed exoplanet of probable mini-Neptune type orbiting the red dwarf star K2-3, and the outermost of three such planets discovered in the system. It is located 143 light-years away from Earth in the constellation of Leo. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. It was the first planet in the Kepler "Second Light" mission to receive the letter "d" designation for a planet. Its discovery was announced in January 2015.

    HIP 41378 is a star located 346 light-years away in the constellation of Cancer. The star has an apparent magnitude of 8.92. This F-type main sequence dwarf has a mass of 1.15 M and a radius of 1.25 R. It has a surface temperature of about 6,251 K.

    <span class="mw-page-title-main">K2-33</span> Star in the constellation Scorpius

    K2-33 is an extremely young pre-main-sequence star located about 456 light-years (140 pc) away from the Earth in the constellation of Scorpius. It is known to host one planet, a super-Neptune, named K2-33b. It is also notable for its young age.

    GJ 9827 is a star in the constellation of Pisces. It is a K-type main-sequence star with an apparent magnitude of 10.250. It is 97 light-years away, based on parallax.

    <span class="mw-page-title-main">K2-138</span> Star in the constellation Aquarius

    K2-138, also designated EPIC 245950175 or EE-1, is a large early K-type main sequence star with a system of at least 6 planets discovered by citizen scientists. Four were found in the first two days of the Exoplanet Explorers project on Zooniverse in early April 2017, while two more were revealed in further analysis. The system is about 660 light-years away in the constellation Aquarius, within K2 Campaign 12.

    K2-187, also known as EPIC 212157262, is a Sun-like star in K2 Campaign 5. It is very close in size and temperature to the Sun, and has a system of four confirmed exoplanets ranging between 1.4 R🜨 and 3.2 R🜨. The innermost planet takes just 18 hours to orbit its star, while the outermost planet orbits every 2 weeks.

    K2-58 is G-type main-sequence star in the constellation of Aquarius, approximately 596 light-years from Solar System. The star is metal-rich, having 155% of Solar abundance of elements heavier than helium. The star is located in the region allowing to see Venus transiting the Sun for hypothetical observer located in K2-58 system.

    GJ 3470 is a red dwarf star located in the constellation of Cancer, 96 light-years away from Earth. With a faint apparent magnitude of 12.3, it is not visible to the naked eye. It hosts one known exoplanet.

    WASP-75 is a F-type main-sequence star about 980 light-years away. The star is much younger than the Sun at approximately 2.9±0.2 billion years. WASP-75 is similar to the Sun in its concentration of heavy elements.

    LTT 9779 is a G-type main-sequence star located 264 light-years away from the Solar System in the constellation of Sculptor. The star is about 95% the radius and about the same mass as the Sun, but younger than the Sun at 1.7 billion years old, hence its lower luminosity. It has a temperature of 5,443 K and a rotation period of 45 days. LTT 9779 is orbited by one known exoplanet.

    References

    1. Crossfield, Ian J. M.; et al. (2015). "A Nearby M Star with Three Transiting Super-Earths Discovered by K2". The Astrophysical Journal. 804 (1). 10. arXiv: 1501.03798 . Bibcode:2015ApJ...804...10C. doi: 10.1088/0004-637X/804/1/10 .
    2. 1 2 Diamond-Lowe, Hannah; Kreidberg, Laura; Harman, C. E.; Kempton, Eliza M.-R.; Rogers, Leslie A.; Joyce, Simon R. G.; Eastman, Jason D.; King, George W.; Kopparapu, Ravi; Youngblood, Allison; Kosiarek, Molly R.; Livingston, John H.; Hardegree-Ullman, Kevin K.; Crossfield, Ian J. M. (2022), "The K2-3 System Revisited: Testing Photoevaporation and Core-powered Mass Loss with Three Small Planets Spanning the Radius Valley", The Astronomical Journal, 164 (5): 172, arXiv: 2207.12755 , Bibcode:2022AJ....164..172D, doi: 10.3847/1538-3881/ac7807 , S2CID   251067119
    3. Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID   244398875. Gaia DR3 record for this source at VizieR.
    4. "K2-3 PLANET HOST PAGE". NASA Exoplanet Archive. Retrieved 2015-10-17.