This section needs additional citations for verification .(December 2018) |
Lacticaseibacillus rhamnosus | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Bacillota |
Class: | Bacilli |
Order: | Lactobacillales |
Family: | Lactobacillaceae |
Genus: | Lacticaseibacillus |
Species: | L. rhamnosus |
Binomial name | |
Lacticaseibacillus rhamnosus (Hansen 1968) Zheng et al. 2020 | |
Synonyms [1] | |
|
Lacticaseibacillus rhamnosus (previously Lactobacillus rhamnosus [1] ) is a bacterium that originally was considered to be a subspecies of L. casei , but genetic research found it to be a separate species in the L. casei clade, which also includes L. paracasei and L. zeae. [2] [3] It is a short Gram-positive homofermentative facultative anaerobic non-spore-forming rod that often appears in chains. Some strains of L. rhamnosus bacteria are being used as probiotics, and are particularly useful in treating infections of the female urogenital tract, most particularly very difficult to treat cases of bacterial vaginosis (or "BV"). [4] The species Lacticaseibacillus rhamnosus and Limosilactobacillus reuteri are commonly found in the healthy female genito-urinary tract and are helpful to regain control of dysbiotic bacterial overgrowth during an active infection. L. rhamnosus sometimes is used in dairy products such as fermented milk and as non-starter-lactic acid bacterium (NSLAB) in long-ripened cheese. [5] While frequently considered a beneficial organism, L. rhamnosus may not be as beneficial to certain subsets of the population; in rare circumstances, especially those primarily involving weakened immune system or infants, it may cause endocarditis. [6] Despite the rare infections caused by L. rhamnosus, the species is included in the list of bacterial species with qualified presumed safety (QPS) status of the European Food Safety Agency. [7]
Lacticaseibacillus rhamnosus is considered a nomadic organism [8] and strains have been isolated from many different environments including the vagina and the gastrointestinal tract. L. rhamnosus strains have the capacity for strain-specific gene functions that are required to adapt to a large range of environments. [9] Its core genome contains 2,164 genes, out of 4,711 genes in total (the pan-genome). [9] The accessory genome is overtaken by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides, biosynthesis, bacteriocin production, pili production, the CRISPR-Cas system, the clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements such as phages, plasmid genes, and transposons. [9]
The genome of the specific strain L. rhamnosus LRB, in this case, taken from a human baby tooth, consists of a circular chromosome of 2,934,954 bp with 46.78% GC content. [10] This genome contains 2,749 total genes with 2,672 that are total protein-coding sequences. [10] This sample did not contain any plasmids. [10] The most extensively studied strain, L. rhamnosus GG, a gut isolate, consists of a genome of 3,010,111 bp. Therefore, the LRB genome is shorter than GG’s genome. LRB lacks the spaCBA gene cluster of GG and is not expected to produce functional pili (6). [10] This difference may help explain why each strain lives in a different habitat.
Lacticaseibacillus rhamnosus GG (ATCC 53103) is a strain of L. rhamnosus that was isolated in 1983 from the intestinal tract of a healthy human being; filed for a patent on 17 April 1985, by Sherwood Gorbach and Barry Goldin, [11] the 'GG' derives from the first letters of their surnames. [12] The patent refers to a strain of "L. acidophilus GG" with American Type Culture Collection (ATCC) accession number 53103; later reclassified as a strain of L. rhamnosus. The patent claims the L. rhamnosus GG (ATCC 53103) strain is acid- and bile-stable, has a great avidity for human intestinal mucosal cells, and produces lactic acid. Since the discovery of the L. rhamnosus GG (ATCC 53103) strain, it has been studied extensively on its various health benefits and currently L. rhamnosus GG (ATCC 53103) strain is the world's most studied probiotic bacterium with more than 800 scientific studies.
The genome sequence of Lactobacillus rhamnosus GG (ATCC 53103) has been decoded in 2009. [13] [14]
In 1983, L. rhamnosus GG was isolated from the intestinal tract of a healthy human by Sherwood Gorbach and Barry Goldin.
While L. rhamnosus GG (ATCC 53103) is able to survive the acid and bile of the stomach and intestine, [15] is claimed to colonize the digestive tract, and to balance intestinal microbiota, evidence suggests that L. rhamnosus, comparable to virtually all probiotic lactobacilli, is only a transient inhabitant and not autochthonous. [16] Lactobacillus rhamnosus GG binds to the gut mucosa. [17] These features make it a favorable organism for the investigation of probiotic supplementation as a potential treatment for a variety of disease states.
Lacticaseibacillus rhamnosus GG is beneficial in the prevention of rotavirus diarrhea in children. Prevention and treatment of various types of diarrhea have been shown in children and in adults. [18] [19] L. rhamnosus GG can be beneficial in the prevention of antibiotic-associated diarrhea and nosocomial diarrhea and this has been recently supported by European guidelines. [20] [21] [22] Lactobacillus rhamnosus GG may reduce the risk of traveler's diarrhea. [23]
A position paper published by ESPGHAN Working Group for Probiotics and Prebiotics based on a systematic review and randomized controlled trials (RCTs) suggested that L. rhamnosus GG (low quality of evidence, strong recommendation) may be considered in the management of children with acute gastroenteritis in addition to rehydration therapy. [24]
Lacticaseibacillus rhamnosus GG has been found to be ineffective for treating eczema. [25] However in one non-randomized clinical observation [26] dealing with resistant childhood atopic eczema, a substantial improvement in quality of life was reported in pediatric patients given Lactobacillus rhamnosus as a supplement.
The use of L. rhamnosus GG for probiotic therapy has been linked with rare cases of sepsis in certain risk groups, primarily those with a weakened immune system and infants. [27] Ingestion of GG is considered to be safe and data show a significant growth in the consumption of L. rhamnosus GG at the population level did not lead to an increase in Lactobacillus bacteraemia cases. [28]
Lacticaseibacillus rhamnosus GR-1 was originally found in the urethra of a healthy female and is nowadays a model strain for vaginal probiotics. A genome comparison between L. rhamnosus GG and L. rhamnosus GR-1 shows that GR-1 lacks spaCBA-encoded pili, an important adhesin in L. rhamnosus GG adhesion to the intestinal epithelial cells. [29] In contrast, L. rhamnosus GR-1 utilises lectin-like proteins to attach to carbohydrates on the surface of the target cell. Lectin-like proteins preferentially bind to nonkeratinized stratified squamous cells which are found in the urethra and vagina. The lectin-like protein 1 purified from L. rhamnosus GR-1 is found to prevent infection by the uropathogenic E. coli UTI89 by inhibiting its adhesion to epithelial cells and by disrupting its biofilm formation. [30] Additionally, it can increase biofilm formation in other beneficial lactobacilli that inhabit the vagina.
Lactobacillus is a genus of gram-positive, aerotolerant anaerobes or microaerophilic, rod-shaped, non-spore-forming bacteria. Until 2020, the genus Lactobacillus comprised over 260 phylogenetically, ecologically, and metabolically diverse species; a taxonomic revision of the genus assigned lactobacilli to 25 genera.
Probiotics are live microorganisms promoted with claims that they provide health benefits when consumed, generally by improving or restoring the gut microbiota. Probiotics are considered generally safe to consume, but may cause bacteria-host interactions and unwanted side effects in rare cases. There is some evidence that probiotics are beneficial for some conditions, but there is little evidence for many of the health benefits claimed for them.
Lactobacillus acidophilus is a rod-shaped, Gram-positive, homofermentative, anaerobic microbe first isolated from infant feces in the year 1900. The species is most commonly found in humans, specifically the gastrointestinal tract, oral cavity, and vagina, as well as various fermented foods such as fermented milk or yogurt. The species most readily grows at low pH levels, and has an optimum growth temperature of 37 °C. Certain strains of L. acidophilus show strong probiotic effects, and are commercially used in dairy production. The genome of L. acidophilus has been sequenced.
Lactiplantibacillus plantarum is a widespread member of the genus Lactiplantibacillus and commonly found in many fermented food products as well as anaerobic plant matter. L. plantarum was first isolated from saliva. Based on its ability to temporarily persist in plants, the insect intestine and in the intestinal tract of vertebrate animals, it was designated as a nomadic organism. L. plantarum is Gram positive, bacilli shaped bacterium. L. plantarum cells are rods with rounded ends, straight, generally 0.9–1.2 μm wide and 3–8 μm long, occurring singly, in pairs or in short chains. L. plantarum has one of the largest genomes known among the lactic acid bacteria and is a very flexible and versatile species. It is estimated to grow between pH 3.4 and 8.8. Lactiplantibacillus plantarum can grow in the temperature range 12 °C to 40 °C. The viable counts of the "L. plantarum" stored at refrigerated condition (4 °C) remained high, while a considerable reduction in the counts was observed stored at room temperature.
Lacticaseibacillus casei is an organism that belongs to the largest genus in the family Lactobacillaceae, a lactic acid bacteria (LAB), that was previously classified as Lactobacillus casei. This bacteria has been identified as facultatively anaerobic or microaerophilic, acid-tolerant, non-spore-forming bacteria.
Limosilactobacillus reuteri is a lactic acid bacterium found in a variety of natural environments, including the gastrointestinal tract of humans and other animals. It does not appear to be pathogenic and may have health effects.
Dysbiosis is characterized by a disruption to the microbiome resulting in an imbalance in the microbiota, changes in their functional composition and metabolic activities, or a shift in their local distribution. For example, a part of the human microbiota such as the skin flora, gut flora, or vaginal flora, can become deranged, with normally dominating species underrepresented and normally outcompeted or contained species increasing to fill the void. Dysbiosis is most commonly reported as a condition in the gastrointestinal tract.
Streptococcus thermophilus formerly known as Streptococcus salivarius subsp. thermophilus is a gram-positive bacterium, and a fermentative facultative anaerobe, of the viridans group. It tests negative for cytochrome, oxidase, and catalase, and positive for alpha-hemolytic activity. It is non-motile and does not form endospores. S. thermophilus is fimbriated.
Saccharomyces boulardii is a tropical yeast first isolated from lychee and mangosteen fruit peel in 1923 by French scientist Henri Boulard. Although early reports claimed distinct taxonomic, metabolic, and genetic properties, S. boulardii is genetically a grouping of S. cerevisiae strains, sharing >99% genomic relatedness, giving the synonym S. cerevisiae var. boulardii.
Limosilactobacillus fermentum is a Gram-positive species in the heterofermentative genus Limosilactobacillus. It is associated with active dental caries lesions. It is also commonly found in fermenting animal and plant material including sourdough and cocoa fermentation. A few strains are considered probiotic or "friendly" bacteria in animals and at least one strain has been applied to treat urogenital infections in women. Some strains of lactobacilli formerly mistakenly classified as L. fermentum have since been reclassified as Limosilactobacillus reuteri. Commercialized strains of L. fermentum used as probiotics include PCC, ME-3 and CECT5716
Pediococcus acidilactici is a species of Gram-positive cocci that is often found in pairs or tetrads. P. acidilactici is a homofermentative bacterium that can grow in a wide range of pH, temperature, and osmotic pressure, therefore being able to colonize the digestive tract. It has emerged as a potential probiotic that has shown promising results in animal and human experiments, though some of the results are limited. They are commonly found in fermented vegetables, fermented dairy products, and meat.
Probiotics are live microorganisms promoted with claims that they provide health benefits when consumed, generally by improving or restoring the gut flora. Probiotics are considered generally safe to consume, but may cause bacteria-host interactions and unwanted side effects in rare cases. There is little evidence that probiotics bring the health benefits claimed for them.
BioGaia is a Swedish biotechnology company that develops, markets and sells a range of probiotic products. It has patented the use of several Lactobacillus reuteri strains and offers gut and immune health products containing L. reuteri Protectis, one of the human L. reuteri strain and oral health products containing L. reuteri Prodentis, a blend of the L. reuteri strains DSM 17938 and ATCC PTA 5289. Products containing L. reuteri have been proven to be both effective and safe in several applications: infant colic, diarrhea prevention and mitigation in children, eradication of H. pylori infection and reduction of side effects from standard H. pylori treatment, amelioration of gingivitis, and general illness prevention in children and adults. BioGaia was ranked 9th in the Top 30 Global Probiotic Food Ingredient Companies list by FoodTalks in 2021. The BioGaia -B share is listed on the NASDAQ OMX Nordic Exchange.
Lactobacillus gasseri is a species in the genus Lactobacillus identified in 1980 by François Gasser and his associates. It is part of the vaginal flora. Its genome has been sequenced. L. gasseri is a normal inhabitant of the lower reproductive tract in healthy women. It also produces Lactocillin.
Limosilactobacillus mucosae is a rod shaped species of lactic acid bacteria first isolated from pig intestines. It has mucus-binding activity. The species is an obligate anaerobe, catalase-negative, doesn't form spores and is non-motile. Its type strain is S32T, and has been found to be most closely related to Limosilactobacillus reuteri.
Lactobacillus gallinarum is a species in the genus Lactobacillus. Its type strain is ATCC 33199.
Lacticaseibacillus paracasei (commonly abbreviated as Lc. paracasei) is a gram-positive, homofermentative species of lactic acid bacteria that are commonly used in dairy product fermentation and as probiotic cultures. Lc. paracasei is a bacterium that operates by commensalism. It is commonly found in many human habitats such as human intestinal tracts and mouths as well as sewages, silages, and previously mentioned dairy products. The name includes morphology, a rod-shaped bacterium with a width of 2.0 to 4.0μm and length of 0.8 to 1.0μm.
Lactobacillus crispatus is a common, rod-shaped species of genus Lactobacillus and is a hydrogen peroxide (H2O2) producing beneficial microbiota species located in both the vagina, through vaginal discharge, and the vertebrate gastrointestinal tract. The strain CTV-05 is used as a probiotic that can be used by premenopausal and postmenopausal women that experience recurrent urinary tract infections. It is being evaluated specifically for the prevention and treatment of bacterial vaginosis, which is characterized by the absence of Lactobacillus flora necessary to protect the host from infection.
Lactobacillus delbrueckii subsp. bulgaricus is a bacterial subspecies traditionally isolated from European yogurts. Lactobacillus bulgaricusGLB44 differs from other L. bulgaricus strains because it was isolated from the leaves of Galanthus nivalis in Bulgaria.
Sherwood Leslie Gorbach is an Emeritus Professor at Tufts University School of Medicine. He was editor-in-chief of the journal Clinical Infectious Diseases from 2000 to 2016.
{{cite book}}
: |journal=
ignored (help)Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, Järvinen A (January 2004). "Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus GG". Clinical Infectious Diseases. 38 (1): 62–9. doi:10.1086/380455. PMID 14679449.