Leptotheridium Temporal range: Middle Eocene to Late Eocene | |
---|---|
Scientific classification ![]() | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Mammalia |
Order: | Artiodactyla |
Genus: | † Leptotheridium Stehlin, 1910 |
Type species | |
†Leptotheridium lugeoni Stehlin, 1910 | |
Other species | |
|
Leptotheridium is an extinct genus of Palaeogene artiodactyl endemic to western Europe that lived from the Middle to Late Eocene. It was erected by the Swiss palaeontologist Hans Georg Stehlin in 1910 and contains the species L. lugeoni and L. traguloides. Its phylogenetic position is unclear, with researchers determining that it belonged to either the Anoplotheriidae (specifically the subfamily Dacrytheriinae) or the Xiphodontidae due to its dental and postcranial anatomy. The small-sized artiodactyl genus is unique from its close relatives in that it seemingly lacks the first lower premolars, weak selenodonty (crescent-like ridges) in its dentition, and has three-lobed canines. It is one of the earlier artiodactyl species to have appeared in the fossil record of Europe.
In 1910, the Swiss palaeontologist Hans Georg Stehlin erected the genus Leptotheridium, which he stated had a dental form similar to that of Catodontherium . The first species that he created was Leptotheridium Lugeoni, designating it as the type species. The species was established based on a partial maxilla with dentition from the Swiss locality of Mormont and was first designated to Rhagatherium valdense by François Jules Pictet de la Rive and Aloïs Humbert in 1869. The second species that he named was L. traguloïdes based on a maxilla fragment from a locality in Egerkingen that was initially classified to Mixtotherium gresslyi by Ludwig Ruetimeyer in 1891. [a] [1] [2] [3]
The taxonomic position of Leptotheridium had long been in dispute as palaeontologists had classified it either to the Anoplotheriidae or Xiphodontidae, two artiodactyl families that were endemic to western Europe during the Palaeogene. In 1910, Stehlin suggested that Leptotheridium was close in affinity to Dacrytherium and Catodontherium , members of the anoplotheriid subfamily Dacrytheriinae. [4] [1] In 1917, the French palaeontologist Charles Depéret placed Leptotheridium in the Dacrytheriidae (now an anoplotheriid subfamily). [5] The systematic placement of Leptotheridium within the Dacrytheriinae (or Dacrytheriidae) had been followed by other palaeontologists like Jean Viret in 1961 and Jean Sudre in 1978. [6] [7]
In 2000, the palaeontologists Jerry J. Hooker and Marc Weidmann reclassified Leptotheridium to the Xiphodontidae, rejecting its previous classification to the Dacrytheriinae due to differences in dental and postcranial anatomy as well as the lack of any preorbital fossa. He argued that its dentition was very to that of Xiphodon , thus further supporting the reclassification. [8] In 2006, Miguel Angel Cuesta et al. chose to follow Hooker and Weidmann in the classification of Leptotherium to the Xiphodontidae instead of the Anoplotheriidae. [9]
In 2022, Weppe created a phylogenetic analysis in his academic thesis regarding Palaeogene artiodactyl lineages, focusing most specifically on the endemic European families. The phylogenetic tree, according to Weppe, is the first to conduct phylogenetic affinities of all anoplotheriid genera, although not all individual species were included. His research placed Leptotheridium into a clade with the dacrytheriines Catodontherium and Dacrytherium, thus positioning it as a member of the Dacrytheriinae rather than the Xiphodontidae. [10]
Leptotheridium is described as being a small-sized artiodactyl that lacks preorbital fossae and is diagnosed as having poorly developed selenodont (crescent-like ridges) crests in its dentition, especially evident by the forms of the postprotocrista and postparaconule ridges on the upper molars (M/m). [4] [7] It was smaller than Catodontherium and Dacrytherium in size and has overall bunoselenodont (bunodont (rounded) and selenodont dentition). [11] Unlike with other members of the Anoplotheriidae and Xiphodontidae known by dental sets, [12] [13] [14] that of Leptotheridium is incomplete (meaning that it has fewer than 44 total teeth) because of the lack of a first lower premolar (P/p), or P1. [4]
The canines (C/c) are incisiform (incisor-shaped (I/i)) but are divided into three deep lobes (trilobed). The premolars are not shaped like molars, with P4 being elongated and having an external conical point. P4 is slightly elongated with a slightly wide back area. P2 is very similar to P3 in shape but differs by its narrower shape. The upper molars are roughly quadrangular in shape and contain prominent paraconule cusps, which along with the mesostyle cusps are prominent like in Catodontherium but less spherical than in Dacrytherium. There are diastemata in between both the lower canine and P2 and the P2 and P3 teeth; the canine still remains in contact with the incisors. [4] [7]
Leptotheridium was additionally previously by an astragalus previously assigned to it that was described as being very narrow and elongated with a narrow tibial groove and a straight bone axis. However, it was later reassigned to Haplomeryx while some postcranial fossils that were assigned previously to Xiphodon were reclassified to Leptotheridium. In terms of the reassigned astragalus, it is narrow plus elongated in form, its tibial groove appearing narrow but deep. The back calcaneal facet, occupying a significant portion of the astragalus' back face, is wide. The calcaneum appears similar to that of Dacrytherium but differs by a more elongated back tuberosity. [5] [8]
For much of the Eocene, a hothouse climate with humid, tropical environments with consistently high precipitations prevailed. Modern mammalian orders including the Perissodactyla, Artiodactyla, and Primates (or the suborder Euprimates) appeared already by the early Eocene, diversifying rapidly and developing dentitions specialized for folivory. The omnivorous forms mostly either switched to folivorous diets or went extinct by the Middle Eocene (47–37 million years ago) along with the archaic "condylarths". By the Late Eocene (approx. 37–33 mya), most of the ungulate form dentitions shifted from bunodont (or rounded) cusps to cutting ridges (i.e. lophs) for folivorous diets. [15] [16]
Land connections between western Europe and North America were interrupted around 53 Ma. From the early Eocene up until the Grande Coupure extinction event (56–33.9 mya), western Eurasia was separated into three landmasses: western Europe (an archipelago), Balkanatolia (in-between the Paratethys Sea of the north and the Neotethys Ocean of the south), and eastern Eurasia. [17] The Holarctic mammalian faunas of western Europe were therefore mostly isolated from other landmasses including Greenland, Africa, and eastern Eurasia, allowing for endemism to develop. [16] Therefore, the European mammals of the Late Eocene (MP17–MP20 of the Mammal Palaeogene zones) were mostly descendants of endemic Middle Eocene groups. [18]
Leptotheridium, or more specifically L. traguloides, first appeared in the fossil record at the Swiss localities of Egerkingen-Huppersand (MP13? or MP14?) and Egerkingen α + β (MP14). [11] [4] [19] By then, it would have coexisted with perissodactyls (Palaeotheriidae, Lophiodontidae, and Hyrachyidae), non-endemic artiodactyls (Dichobunidae and Tapirulidae), endemic European artiodactyls (Choeropotamidae, Cebochoeridae, and Anoplotheriidae), and primates (Adapidae). The Amphimerycidae and non-disputed members of the Xiphodontidae made their first appearances by the level MP14. [20] [21] [22] The stratigraphic ranges of the early species of L. traguloides also overlapped with metatherians (Herpetotheriidae), cimolestans (Pantolestidae, Paroxyclaenidae), rodents (Ischyromyidae, Theridomyoidea, Gliridae), eulipotyphlans, bats, apatotherians, carnivoraformes (Miacidae), and hyaenodonts (Hyainailourinae, Proviverrinae). [23] Other MP13-MP14 sites have also yielded fossils of turtles and crocodylomorphs, [24] and MP13 sites are stratigraphically the latest to have yielded remains of the bird clades Gastornithidae and Palaeognathae. [25]
Based on the Egerkingen α + β locality, L. traguloides coexisted with the herpetotheriid Amphiperatherium , ischyromyids Ailuravus and Plesiarctomys , pseudosciurid Treposciurus , omomyid Necrolemur , adapid Leptadapis , proviverrine Proviverra , palaeotheres ( Propalaeotherium , Anchilophus , Lophiotherium , Plagiolophus , Palaeotherium ), hyrachyid Chasmotherium , lophiodont Lophiodon , dichobunids Hyperdichobune and Mouillacitherium , choeropotamid Rhagatherium , anoplotheriid Catodontherium, amphimerycid Pseudamphimeryx, cebochoerid Cebochoerus , tapirulid Tapirulus , mixtotheriid Mixtotherium , and the xiphodonts Dichodon and Haplomeryx. [4] [23]
MP16 marks the first appearance of L. lugeoni and the last known appearance of L. traguloides based on occurrences at multiple localities such as Robiac and Lavergne. [23] [26] Within the French locality of Le Bretou, both species of Leptotheridium cooccurred with the herpetotheriids Amphiperatherium and Peratherium , pseudorhyncocyonid Leptictidium , nyctitheres Cryptotopos and Saturninia , notharctid Anchomomys , omomyids Necrolemur and Pseudoloris , glirid Glamys , pseudosciurid Sciuroides , bats ( Carcinipteryx , Hipposideros , Palaeophyllophora , Vaylatsia , Vespertiliavus ), proviverrine Allopterodon , carnivoraforme Quercygale , cebochoerids Acotherulum and Cebochoerus, anoplotheriids (Catodontherium, Dacrytherium and Robiatherium), xiphodonts (Xiphodon, Dichodon, Haplomeryx), dichobunids Dichobune and Mouillacitherium, lophiodont Lophiodon , and palaeotheres (Anchilophus, Eurohippus , Pachynolophus , Metanchilophus , Leptolophus , Plagiolophus, Palaeotherium). [26]
After MP16, faunal turnover occurred, marking the disappearances of the lophiodonts and European hyrachyids as well as the extinctions of all European crocodylomorphs except for the alligatoroid Diplocynodon . [21] [24] [27] [28] The causes of the faunal turnover have been attributed to a shift from humid and highly tropical environments to drier and more temperate forests with open areas and more abrasive vegetation. The surviving herbivorous faunas shifted their dentitions and dietary strategies accordingly to adapt to abrasive and seasonal vegetation. [29] [30] The environments were still subhumid and full of subtropical evergreen forests, however. The Palaeotheriidae was the sole remaining European perissodactyl group, and frugivorous-folivorous or purely folivorous artiodactyls became the dominant group in western Europe. [31] [20]
The temporal range of Leptotheridium occurred up to MP17b, as evident by the appearances of L. aff. lugeoni in the French locality of Fons 4 (MP17a) and L. cf. lugeoni in another French locality of Perrière. [23] [11] In Perrière, its fossils were found with those of the herpetotheriids Peratherium and Amphiperatherium , pseudorhyncocyonid Pseudorhyncocyon , apatemyid Heterohyus , nyctitheriid Saturninia , various bats, rodents (Gliridae, Theridomyidae), omomyids Pseudoloris and Microchoerus , adapid Leptadapis, hyaenodontid Hyenodon , miacid Quercygale , palaeotheres ( Lophiotherium , Palaeotherium , and Plagiolophis ), dichobunid Mouillacitherium , cebochoerid Acotherulum , mixtothere Mixtotherium, anoplotheriid Dacrytherium, tapirulid Tapirulus , xiphodonts Dichodon and Haplomeryx , and the amphimerycid Pseudamphimeryx . [23]
Palaeotherium is an extinct genus of equoid that lived in Europe and possibly the Middle East from the Middle Eocene to the Early Oligocene. It is the type genus of the Palaeotheriidae, a group exclusive to the Palaeogene that was closest in relation to the Equidae, which contains horses plus their closest relatives and ancestors. Fossils of Palaeotherium were first described in 1782 by the French naturalist Robert de Lamanon and then closely studied by another French naturalist, Georges Cuvier, after 1798. Cuvier erected the genus in 1804 and recognized multiple species based on overall fossil sizes and forms. As one of the first fossil genera to be recognized with official taxonomic authority, it is recognized as an important milestone within the field of palaeontology. The research by early naturalists on Palaeotherium contributed to the developing ideas of evolution, extinction, and succession and demonstrating the morphological diversity of different species within one genus.
Anoplotherium is the type genus of the extinct Palaeogene artiodactyl family Anoplotheriidae, which was endemic to Western Europe. It lived from the Late Eocene to the earliest Oligocene. It was the fifth fossil mammal genus to be described with official taxonomic authority, with a history extending back to 1804 when its fossils from Montmartre in Paris, France were first described by the French naturalist Georges Cuvier. Discoveries of incomplete skeletons of A. commune in 1807 led Cuvier to thoroughly describe unusual features for which there are no modern analogues. His drawn skeletal and muscle reconstructions of A. commune in 1812 were amongst the first instances of anatomical reconstructions based on fossil evidence. Cuvier's contributions to palaeontology based on his works on the genus were revolutionary for the field, not only proving the developing ideas of extinction and ecological succession but also paving the way for subfields such as palaeoneurology. Today, there are four known species.
Xiphodontidae is an extinct family of herbivorous even-toed ungulates, endemic to Europe during the Eocene 40.4—33.9 million years ago, existing for about 7.5 million years. Paraxiphodon suggests that they survived into the Lower Oligocene, at least.
Anoplotheriidae is an extinct family of artiodactyl ungulates. They were endemic to Europe during the Eocene and Oligocene epochs about 44—30 million years ago. Its name is derived from the Ancient Greek: ἂνοπλος ("unarmed") and θήριον ("beast"), translating as "unarmed beast".
Duerotherium is an extinct genus of artiodactyl that lived during the Middle Eocene and is only known from the Iberian Peninsula. The genus is a member of the family Anoplotheriidae and the subfamily Anoplotheriinae, and contains one species, D. sudrei. Like other anoplotheriids, it was endemic to Western Europe. The genus was described based on a left fragment of a maxilla from the Mazaterón Formation of the Duero Basin, from which its name derives, in 2009. Its dentition is mostly typical of the Anoplotheriinae but differs from related genera in the elongated and triangular third upper premolar and traits of the molars. It is thought to have been part of an endemic fauna that evolved in the Iberian Peninsula during the Middle Eocene, when climates were subtropical.
Xiphodon is the type genus of the extinct Palaeogene artiodactyl family Xiphodontidae. It, like other xiphodonts, was endemic to Western Europe and lived from the middle Eocene up to the earliest Oligocene. Fossils from Montmartre in Paris, France that belonged to X. gracilis were first described by the French naturalist Georges Cuvier in 1804. Although he assigned the species to Anoplotherium, he recognized that it differed from A. commune by its dentition and limb bones, later moving it to its own subgenus in 1822. Xiphodon was promoted to genus rank by other naturalists in later decades. It is today defined by the type species X. gracilis and two other species, X. castrensis and X. intermedium.
Plagiolophus is an extinct genus of equoids belonging to the family Palaeotheriidae. It lived in Europe from the middle Oligocene to the early Oligocene. The type species P. minor was initially described by the French naturalist Georges Cuvier in 1804 based on postcranial material including a now-lost skeleton originally from the Paris Basin. It was classified to Palaeotherium the same year but was reclassified to the subgenus Plagiolophus, named by Auguste Pomel in 1847. Plagiolophus was promoted to genus rank by subsequent palaeontologists and today includes as many as seventeen species. As proposed by the French palaeontologist Jean A. Remy in 2004, it is defined by three subgenera: Plagiolophus, Paloplotherium, and Fraasiolophus.
Cainotheriidae is an extinct family of artiodactyls known from the Late Eocene to Middle Miocene of Europe. They are mostly found preserved in karstic deposits.
Dichodon is an extinct genus of Palaeogene artiodactyls belonging to the family Xiphodontidae. It was endemic to Western Europe and lived from the middle Eocene up to the earliest Oligocene. The genus was first erected by the British naturalist Richard Owen in 1848 based on dental remains from the fossil beds in Hordle, England. He noticed similar dentitions to contemporary artiodactyls like those of the Anoplotheriidae and Dichobunidae and references the name of the genus Dichobune. Eventually, it was found to be more closely related to Xiphodon and now includes 11 species, although one of them may be synonymous.
Bachitherium is an extinct genus of Paleogene ruminants that lived in Europe from the late Eocene to the late Oligocene. The genus was erected in 1882 by Henri Filhol based on fossil remains found in the Quercy Phosphorites Formation. Bachitherium curtum was defined the type species, and another species called B. insigne; five more species have since been named although one, B. sardus, is currently pending reassessment. The genus name derives from "Bach", the French locality where its first fossils were found, and the Greek θήρ/therium meaning "beast". Bachitherium has historically been assigned to various families within the ruminant infrorder Tragulina, but was reclassified to its own monotypic family Bachitheriidae by Christine Janis in 1987.
Diplobune is an extinct genus of Palaeogene artiodactyls belonging to the family Anoplotheriidae. It was endemic to Europe and lived from the late Eocene to the early Oligocene. The genus was first erected as a subgenus of Dichobune by Ludwig Rütimeyer in 1862 based on his hypothesis of the taxon being a transitional form between "Anoplotherium" secundaria, previously erected by Georges Cuvier in 1822, and Dichobune. He based the genus etymology off of the two-pointed pillarlike shapes of the lower molars, which had since been a diagnosis of it. However, in 1870, Diplobune was elevated to genus rank by Oscar Fraas, who recognized that Diplobune was a distinct genus related to Anoplotherium and not Dichobune. After several revisions of the anoplotheriids, there are currently four known species of which D. minor is the type species.
Dacrytherium is an extinct genus of Palaeogene artiodactyls belonging to the family Anoplotheriidae. It occurred from the Middle to Late Eocene of Western Europe and is the type genus of the subfamily Dacrytheriinae, the older of the two anoplotheriid subfamilies. Dacrytherium was first erected in 1876 by the French palaeontologist Henri Filhol, who recognised in his studies that it had dentition similar to the anoplotheriids Anoplotherium and Diplobune but differed from them by a deep preorbital fossa and a lacrimal fossa, the latter of which is where the genus name derives from. D. ovinum, originally classified in Dichobune, is the type species of Dacrytherium. Henri Filhol named D. elegans in 1884, and Hans Georg Stehlin named the species D. priscum and D. saturnini in 1910.
Catodontherium is an extinct genus of Palaeogene artiodactyls belonging to the family Anoplotheriidae. It was endemic to Western Europe and had a temporal range exclusive to the middle Eocene, although its earliest appearance depends on whether C. argentonicum is truly a species of Catodontherium. It was first named Catodus by the French palaeontologist Charles Depéret in 1906, who created two species for the genus and later changed the genus name to Catodontherium in 1908. The Swiss palaeontologist Hans Georg Stehlin renamed one species and classified two other newly erected species to Catodontherium in 1910. Today, there are four known species, although two remain questionable in genus placement.
Ephelcomenus is an extinct genus of Palaeogene artiodactyls belonging to the Anoplotheriidae that were endemic to Western Europe. It contains one species E. filholi, which was first described by Richard Lydekker in 1889 but eventually classified to its own genus by the Swiss palaeontologist Johannes Hürzeler in 1938. It has an uncertain stratigraphic range, but some sources suggest that it was present in the Oligocene after the Grande Coupure turnover event of western Europe.
Robiatherium is an extinct genus of Palaeogene artiodactyls containing one species R. cournovense. The genus name derives from the locality of Robiac in France where some of its fossil were described plus the Greek θήρ/therium meaning "beast" or "wild animal". It was known only from the middle Eocene and, like other anoplotheriids, was endemic to Western Europe. The genus was erected by Jean Sudre in 1988 for a species originally attributed to the xiphodont genus Paraxiphodon in 1978. Robiatherium had dentitions typical of the subfamily Anoplotheriinae, differing from other genera by specific differences in the molars. It is one of the earliest-appearing anoplotheriine species in the fossil record as well as the earliest to have appeared in Central Europe.
Mixtotherium is an extinct genus of Palaeogene artiodactyls belonging to the monotypic family Mixtotheriidae. Known informally as mixtotheriids or mixtotheres, these artiodactyls were endemic to western Europe and occurred from the middle to late Eocene. The genus and type species were both first established by the French naturalist Henri Filhol in 1880. Several species are well known by good skull fossils, which were informative enough to allow for classifications of the species to their own family. The Mixtotheriidae, first recognized by Helga Sharpe Pearson in 1927, is currently known by 7 valid species, although M. priscum is thought by several authors to be synonymous with M. gresslyi. The affinities of the Mixtotheriidae in relation to other artiodactyl families is uncertain, but it is currently thought to have been related to the Cainotherioidea and Anoplotheriidae.
Haplomeryx is an extinct genus of Palaeogene artiodactyls belonging to the family Xiphodontidae. It was endemic to Western Europe and lived from the Middle Eocene up to the earliest Oligocene. Haplomeryx was first established as a genus by the German naturalist Max Schlosser in 1886 based on a molar tooth set from Quercy Phosphorites deposits. Three additional species were erected and classified to the xiphodontid genus while one other species, first recognized in 1822, was tentatively classified to it and remains unresolved in affinity.
Amphimeryx is an extinct genus of Palaeogene artiodactyls belonging to the Amphimerycidae that was endemic to the central region of western Europe and lived from the Late Eocene to the Early Oligocene. It was erected in 1848 by the French palaeontologist Auguste Pomel, who argued that its dentition was roughly similar to those of ruminants. Hence, the etymology of the genus name means "near ruminant," of which it derives from the ancient Greek words ἀμφί (near) and μήρυξ (ruminant). The type species A. murinus was previously recognized as a species of Dichobune by the French palaeontologist Georges Cuvier in 1822 before its eventual reclassification to its own genus. Two other species A. collotarsus and A. riparius are recognized also today although the former may be synonymous with A. murinus while the latter is known solely by a now-lost fossil specimen.
Pseudamphimeryx is an extinct genus of Palaeogene artiodactyls belonging to the Amphimerycidae that was endemic to the central region of western Europe and lived from the Middle to Late Eocene. It was first erected in 1910 by the Swiss palaeontologist Hans Georg Stehlin, who assigned to it multiple species and noted specific differences from another amphimerycid Amphimeryx. As of present, it is known by six species, although the validity of P. valdensis has been questioned while the earliest-appearing species P. schosseri has been suggested to not be an amphimerycid.
Amphimerycidae is an extinct family of artiodactyls that was endemic to western Europe that lived from the Middle Eocene to the Early Oligocene. With a taxonomic history extending as far back as 1804, the family was formally recognized by the Swiss palaeontologist Hans Georg Stehlin in 1910 and contains two genera: Amphimeryx and Pseudamphimeryx. Both amphimerycid genera are very similar to each other in terms of skull and dental anatomy but do have specific differences from each other. Both genera are best known from their fused cuboid bone and navicular bone, which together make up a single "cubonavicular bone" of the hind legs. This trait had long been used in support of the idea that they were ruminants by taxonomists. However, their classification to the Ruminantia had also been rejected by other taxonomists later on due to differences in dentition; the systematic position of the Amphimerycidae and close relatives in relation to the wider Artiodactyla, as a result, is unclear.
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)