Catodontherium

Last updated

Catodontherium
Temporal range: Middle Eocene
Catodontherium fallax.jpg
Catodontherium fallax jaw fragment, Natural History Museum of Basel
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Family: Anoplotheriidae
Subfamily: Dacrytheriinae
Genus: Catodontherium
Depéret, 1908
Type species
Catodus robiacensis
(= †Catodontherium robiacense)
Depéret, 1906
Other species
  • C. fallax Stehlin, 1910
  • C. buxgovianumStehlin, 1910
  • C. paquieri?Stehlin, 1910
  • C. argentonicum?Stehlin, 1910
Synonyms
Genus synonymy
  • CatodusDepéret, 1906
Synonyms of C. robiacense
  • Catodus robiacensisDepéret, 1908
Synonyms of C. fallax
  • Catodus RutimeyeriDepéret, 1908

Catodontherium is an extinct genus of Palaeogene artiodactyls belonging to the family Anoplotheriidae. It was endemic to Western Europe and had a temporal range exclusive to the middle Eocene, although its earliest appearance depends on whether C. argentonicum is truly a species of Catodontherium. It was first named Catodus by the French palaeontologist Charles Depéret in 1906, who created two species for the genus and later changed the genus name to Catodontherium in 1908. The Swiss palaeontologist Hans Georg Stehlin renamed one species and classified two other newly erected species to Catodontherium in 1910. Today, there are four known species, although two remain questionable in genus placement.

Contents

Similar to the other dacrytheriine Dacrytherium and unlike anoplotheriines such as Anoplotherium , Catodontherium had a preorbital fossa. It also had cranial and dental morphologies typical of the Dacrytheriinae but had specific differences from Dacrytherium such as the position of the infraorbital foramen and forms of the premolars and molars. The anoplotheriid is known by very few facial and limb remains, most of which are fragmentary.

Typical of anoplotheriids, Catodontherium lived in Western Europe back when it was an archipelago that was isolated from the rest of Eurasia, meaning that it lived in subtropical-tropical environments with various other faunal assembagess that also evolved with high levels of endemism.

Taxonomy

Illustrated reconstruction of a partial facial skull of Catodontherium buxgovianum, 1910 Catodontherium buxgovianum partial skull 1910.png
Illustrated reconstruction of a partial facial skull of Catodontherium buxgovianum, 1910

In 1906, the French palaeontologist Charles Depéret wrote about fauna groups classified as being of the Bartonian stage of the middle Eocene. According to him, the localities of Robiac in France and Mormont in Switzerland have abundant fossil remains of anthracotheres with molars lower in shape than those of the Oligocene-aged Brachyodus . He said that specimens were previously designated by François Jules Pictet de la Rive under the species name "Hyopotamus gresslyi" (previously named by Ludwig Rütimeyer in 1862) but that he could not reuse the species name because Christian Erich Hermann von Meyer applied it previously to a lost molar holotype in the form of the now-invalid species name "Tapinodon gresslyi" in 1846. Since he determined that it did not belong to "Hyopotamus" (= Bothriodon ), he decided to erect the genus name Catodus and create the species Catodus robiacensis, thinking that it may have been within the ancestral lineage of Brachyodus. He also said that Rütimeyer designated fossils of another species to Hyopotamus gresslyi, replacing it with another species name Catodus Rutimeyeri. [1] [2]

In 1908, Depéret replaced the previous genus name Catodus with the newer genus name Catodontherium but reinforced the validity of its two species. He stated that it was oldest of the Brachyodus branch, C. Rutimeyeri being the oldest known species. [3] According to the American palaeontologist George Gaylord Simpson in 1945, the genus was renamed because of apparent preoccupation of a prior genus name Catodon. He stated that the genus name was not a preoccupation but that it was a nomen nudum anyways, meaning that Catodontherium could be retained. [4]

"Hyopotamus gresslyi" was taxonomically problematic since fossils of other artiodactyls like Catodontherium and later Dacrytherium were historically assigned to it. Swiss palaeontologist Hans Georg Stehlin previously synonymized Tapinodon gresslyi and Hyopotamus gresslyi with the newly erected species Haplobunodon lydekkeri (replacing Haplobunodon picteti) in 1908. In 1910, Stehlin validated Catodontherium because its dentition differed from typical Oligocene anthracotheres by its extreme brachydonty (low crowns) and elongated premolars. He stated that the brachydonty was more extreme compared to Dacrytherium and Leptotheridium and argued that while the species name Dichodon valdense could replace C. robiacense, the former may not have been valid compared to the latter. He also created another species C. fallax and said that the other name C. rutimeyeri should be synonymized with it because it was diagnosed only on isolated teeth. He also established three additional species named C. buxgovianum, C(?) paquieri, and C(?) argentonicum based on other remains. [5] [6]

C. robiacense and C. buxgovianum have since been defined as valid species belonging to Catodontherium while C. paquieri? and C. argentonicum? remain uncertain in genus placement. The genus is described as being not as well-known compared to Dacrytherium. [7] [8]

Classification

Carving of Charles Deperet, who erected the genus Catodontherium Professeur Charles Deperet UCBL Doua.JPG
Carving of Charles Depéret, who erected the genus Catodontherium

Catodontherium belongs to the subfamily Dacrytheriinae, which belongs to the Palaeogene artiodactyl family Anoplotheriidae. [8] The family was endemic to Western Europe and lived from the middle Eocene to the early Oligocene (~44 to 30 Ma, possible earliest record at ~48 Ma). The exact evolutionary origins and dispersals of the anoplotheriids are uncertain, but they exclusively resided within the continent when it was an archipelago that was isolated by seaway barriers from other regions such as Balkanatolia and the rest of eastern Eurasia. The Anoplotheriidae's relations with other members of the Artiodactyla are not well-resolved, with some determining it to be either a tylopod (which includes camelids and merycoidodonts of the Palaeogene) or a close relative to the infraorder and some others believing that it may have been closer to the Ruminantia (which includes tragulids and other close Palaeogene relatives). [9] [10]

The history of dacrytheriines has been contentious as a result of disagreements as to whether they constitute a subfamily of the Anoplotheriidae or a distinct family named "Dacrytheriidae". The family name was first proposed by Charles Depéret in 1917 and was generally followed for decades by other palaeontologists like Jean Sudre. Since 2007, however, they were redefined as a subfamily within the Anoplotheriidae, supported by recent phylogenetic analyses determining that Dacrytherium falls within the Anoplotheriidae. It is one of two subfamilies of the Anoplotheriidae, the other being the Anoplotheriinae. [8] [11] [12]

The Dacrytheriinae is the older anoplotheriid subfamily, but the actual first appearance by Mammal Palaeogene range is uncertain. The first undisputed appearance of anoplotheriids is by MP13, but their range may have extended, in the case of Catodontherium, into MP11 or even MP10. [8] [13] Dacrytherium itself made its first undisputed appearance by MP13 as an artiodactyl leaning towards bunoselenodont (bunodont (rounded cusps) plus selenodont (crescent-shaped ridge form)) dentition. [14] The younger subfamily Anoplotheriinae made their first appearances by the late Eocene (MP15-MP16), or ~41-40 Ma, within Western Europe with Duerotherium and Robiatherium . After a significant gap of anoplotheriines in MP17a-MP17b, the derived anoplotheriids Anoplotherium and Diplobune made their first appearances in Western Europe by MP18, although their exact origins are unknown. [15] In 2022 it was suggested that Dacrytheriinae is a paraphyletic subfamily based on dental morphology from which the Anoplotheriinae, Mixtotheriidae, and Cainotherioidea stemmed, but further research is required to confirm if this is true. [16]

Conducting studies focused on the phylogenetic relations within the Anoplotheriidae has proven difficult due to the general scarcity of fossils for most of the species. [15] The phylogenetic relations of the Anoplotheriidae as well as the Xiphodontidae, Mixtotheriidae, and Cainotheriidae have also been elusive due to the selenodont morphologies of the molars, which were convergent with tylopods or ruminants. [16] Some researchers considered the selenodont families Anoplotheriidae, Xiphodontidae, and Cainotheriidae to be within Tylopoda due to postcranial features that were similar to the tylopods from North America in the Palaeogene. [17] Other researchers tie them as being more closely related to ruminants than tylopods based on dental morphology. Different phylogenetic analyses have produced different results for the "derived" selenodont Eocene European artiodactyl families, making it uncertain whether they were closer to the Tylopoda or Ruminantia. [12] [18]

In an article published in 2019, Romain Weppe et al. conducted a phylogenetic analysis on the Cainotherioidea within the Artiodactyla based on mandibular and dental characteristics, specifically in terms of relationships with artiodactyls of the Palaeogene. The results retrieved that the superfamily was closely related to the Mixtotheriidae and Anoplotheriidae. They determined that the Cainotheriidae, Robiacinidae, Anoplotheriidae (represented below by Anoplotherium and Dacrytherium), and Mixtotheriidae formed a clade that was the sister group to the Ruminantia while Tylopoda, along with the Amphimerycidae and Xiphodontidae split earlier in the tree. [18] The phylogenetic tree published in the article and another work about the cainotherioids is outlined below: [11]

In 2022, Weppe created a phylogenetic analysis in his academic thesis regarding Palaeogene artiodactyl lineages, focusing most specifically on the endemic European families. The phylogenetic tree, according to Weppe, is the first to conduct phylogenetic affinities of all anoplotheriid genera, although not all individual species were included. He found that the Anoplotheriidae, Mixtotheriidae, and Cainotherioidea form a clade based on synapomorphic dental traits (traits thought to have originated from their most recent common ancestor). The result, Weppe mentioned, matches up with previous phylogenetic analyses on the Cainotherioidea with other endemic European Palaeogene artiodactyls that support the families as a clade. As a result, he argued that the proposed superfamily Anoplotherioidea, composed of the Anoplotheriidae and Xiphodontidae as proposed by Alan W. Gentry and Hooker in 1988, is invalid due to the polyphyly of the lineages in the phylogenetic analysis. However, the Xiphodontidae was still found to compose part of a wider clade with the three other groups. [16] He also proposed that Leptotheridium, previously relocated from the "Dacrytheriidae" to the Xiphodontidae, composes part of a paraphyletic anoplotheriid clade with the dacrytheriines Catodontherium and Dacrytherium. [19] [8] [16]

Description

Skull

Illustrated upper skull of the closely related Dacrytherium ovinum, 1877 Dacrytherium ovinum skull.png
Illustrated upper skull of the closely related Dacrytherium ovinum, 1877

The dacrytheriines share the presences of preorbital fossae, distinguishing them cranially from anoplotheriines. [20] C. buxgovianum is known by a preorbital fossa similar to Dacrytherium, but its development is less marked. [21] C. buxgovianum and C. fallax are known by fragmentary cranial fossil remains, described by Stehlin in 1910 and stored currently at the Natural History Museum of Basel. The compressed skull fragment specimen Ef.419, belonging to C. buxgovianum, is a back portion of the facial skull with the moderate-sized right orbit located slightly above the edge of the alveolar process. The infraorbital foramen is somewhat distant from the front of the orbit, is above the M1 tooth, and differs in position to that of Dacrytherium. Stehlin speculated that the top view of the skull of Catodontherium may have been similar in appearance to that of Dacrytherium. [6] C. fallax, known by three skull fragments, has a similar texture to that observed in C. buxgovianum. Its infraorbital foramen is above the border of M2 and M1, a depression occurring at the middle position of where M2 is. [6]

The horizontal ramus of the mandible of C. buxgovianum is large and has less of a proportion increase in the back area compared to that of Dacrytherium ovinum. [6]

Dentition

C. robiacense lower dentition, drawn in 1910 (M1 missing) Catodontherium robiacense lower dentition.jpg
C. robiacense lower dentition, drawn in 1910 (M1 missing)

The dental formula of Catodontherium and other anoplotheriids is 3.1.4.33.1.4.3 for a total of 44 teeth, consistent with the primitive dental formula for early-middle Palaeogene placental mammals. [22] [23] Anoplotheriids have selenodont (crescent-shaped ridge form) or bunoselenodont (bunodont and selenodont) premolars (P/p) and molars (M/m) made for leaf-browsing diets. The canines (C/c) of the Anoplotheriidae are overall undifferentiated from the incisors (I/i). The lower premolars of the family are piercing and elongated. The upper molars are bunoselenodont in form while the lower molars have selenodont labial cuspids and bunodont (or rounded) lingual cuspids. The subfamily Anoplotheriinae differs from the Dacrytheriinae by the molariform premolars with crescent-shaped paraconules and the lower molars that lack a third cusp between the metaconid and entoconid. [10]

Catodontherium is diagnosed as having more elongated lower premolars, except for the P4, compared to Dacrytherium and lower molars without the side mediostylid cusp that Dacrytherium has. The third lobe (or division) of the M3 has a double-cusped formation. The upper molars are trapezoidal in outline, with the labial sides of their paracone and metacone cusps being slightly ridged. [8] The molars are very brachydont while the last two back premolars are sharp. [20] The molars of C. argentonicum? are seemingly more bunodont compared to other species of Catodontherium and Dacrytherium. [8]

Limbs

Catodontherium is known by very few postcranial remains, leading Hooker to state in 2007 that the genus lacks any astragalus fossil designated to it. [17] Alternatively in 1947, Jean Viret and J. Prudant described proximal ends of the radii bones that had typical anoplotheriid morphologies that correspond to unusual forelimb movement compared to other artiodactyls. They designated one proximal radius end to C. robiacense on the basis that it was transversely enlarged and was primitive in appearance compared to that of Dacrytherium because it was not as differentiated anatomically. They also said the astragalus of Catodontherium has similar sizes and proportions to that of "Brachyodus borbonicus" (= Elomeryx borbonicus) but differs by a projection on its external face near a facet joint for the calcaneum. [24] According to Jean Sudre in 1969, C. robiacense has tridactyl (three-toed) hind legs, citing from a 1948 source by A. Favre that there is no trace of the 1st and 5th metatarsals. [21]

Palaeoecology

Middle Eocene

Palaeogeography of Europe and Asia during the middle Eocene with possible artiodactyl and perissodactyl dispersal routes. Middle Eocene Paleogeography Tethys Dispersals.jpg
Palaeogeography of Europe and Asia during the middle Eocene with possible artiodactyl and perissodactyl dispersal routes.

For much of the Eocene, a hothouse climate with humid, tropical environments with consistently high precipitations prevailed. Modern mammalian orders including the Perissodactyla, Artiodactyla, and Primates (or the suborder Euprimates) appeared already by the early Eocene, diversifying rapidly and developing dentitions specialized for folivory. The omnivorous forms mostly either switched to folivorous diets or went extinct by the middle Eocene (47 – 37 Ma) along with the archaic "condylarths". By the late Eocene (approx. 37 – 33 Ma), most of the ungulate form dentitions shifted from bunodont cusps to cutting ridges (i.e. lophs) for folivorous diets. [25] [26]

Land-based connections to the north of the developing Atlantic Ocean were interrupted around 53 Ma, meaning that North America and Greenland were no longer well-connected to Western Europe. From the early Eocene up until the Grande Coupure extinction event (56 Ma – 33.9 Ma), the western Eurasian continent was separated into three landmasses, the former two of which were isolated by seaways: Western Europe (an archipelago), Balkanatolia, and eastern Eurasia (Balkanatolia was in between the Paratethys Sea of the north and the Neotethys Ocean of the south). [9] The Holarctic mammalian faunas of Western Europe were therefore mostly isolated from all other regions, allowing for endemism to occur within Western Europe. [26] The European mammals of the late Eocene (MP17 – MP20) were mostly descendants of endemic middle Eocene groups as a result. [27]

C. argentonicum? was present in Western Europe by MP11 based on fossil presence at the locality of Argenton in France. [8] [13] In terms of undisputed species, C. fallax made an appearance in the continent by MP14 based on its presence at the locality of Egerkingen, Switzerland. [28] By MP14, it would have coexisted with perissodactyls (Palaeotheriidae, Lophiodontidae, and Hyrachyidae), non-endemic artiodactyls (Dichobunidae and Tapirulidae), endemic European artiodactyls (Choeropotamidae, Cebochoeridae, Mixtotheriidae, Amphimerycidae, Xiphodontidae, and other members of Anoplotheriidae), and primates (Adapidae). [29] [14] [30] The stratigraphic ranges of Catodontherium also overlapped with metatherians (Herpetotheriidae), cimolestans (Pantolestidae, Paroxyclaenidae), rodents (Ischyromyidae, Theridomyoidea, Gliridae), eulipotyphlans, bats, apatotherians, carnivoraformes (Miacidae), and hyaenodonts (Hyainailourinae, Proviverrinae). [28] Other MP13-MP14 sites have also yielded fossils of turtles and crocodylomorphs. [31] Catodontherium made its latest known appearance by MP16 as the species C. robiacense as indicated by the French locality of Robiac, still having coexisted with largely similar faunas. [28] [32] [13]

Related Research Articles

<i>Palaeotherium</i> Extinct genus of mammals

Palaeotherium is an extinct genus of equoid that lived in Europe and possibly the Middle East from the Middle Eocene to the Early Oligocene. It is the type genus of the Palaeotheriidae, a group exclusive to the Palaeogene that was closest in relation to the Equidae, which contains horses plus their closest relatives and ancestors. Fossils of Palaeotherium were first described in 1782 by the French naturalist Robert de Lamanon and then closely studied by another French naturalist, Georges Cuvier, after 1798. Cuvier erected the genus in 1804 and recognized multiple species based on overall fossil sizes and forms. As one of the first fossil genera to be recognized with official taxonomic authority, it is recognized as an important milestone within the field of palaeontology. The research by early naturalists on Palaeotherium contributed to the developing ideas of evolution, extinction, and succession and demonstrating the morphological diversity of different species within one genus.

<i>Anoplotherium</i> Extinct genus of endemic Paleogene European artiodactyls

Anoplotherium is the type genus of the extinct Palaeogene artiodactyl family Anoplotheriidae, which was endemic to Western Europe. It lived from the Late Eocene to the earliest Oligocene. It was the fifth fossil mammal genus to be described with official taxonomic authority, with a history extending back to 1804 when its fossils from Montmartre in Paris, France were first described by the French naturalist Georges Cuvier. Discoveries of incomplete skeletons of A. commune in 1807 led Cuvier to thoroughly describe unusual features for which there are no modern analogues. His drawn skeletal and muscle reconstructions of A. commune in 1812 were amongst the first instances of anatomical reconstructions based on fossil evidence. Cuvier's contributions to palaeontology based on his works on the genus were revolutionary for the field, not only proving the developing ideas of extinction and ecological succession but also paving the way for subfields such as palaeoneurology. Today, there are four known species.

<span class="mw-page-title-main">Xiphodontidae</span> Extinct family of mammals

Xiphodontidae is an extinct family of herbivorous even-toed ungulates, endemic to Europe during the Eocene 40.4—33.9 million years ago, existing for about 7.5 million years. Paraxiphodon suggests that they survived into the Lower Oligocene, at least.

<span class="mw-page-title-main">Anoplotheriidae</span> Extinct family of mammals

Anoplotheriidae is an extinct family of artiodactyl ungulates. They were endemic to Europe during the Eocene and Oligocene epochs about 44—30 million years ago. Its name is derived from the Ancient Greek: ἂνοπλος ("unarmed") and θήριον ("beast"), translating as "unarmed beast".

Duerotherium is an extinct genus of artiodactyl that lived during the Middle Eocene and is only known from the Iberian Peninsula. The genus is a member of the family Anoplotheriidae and the subfamily Anoplotheriinae, and contains one species, D. sudrei. Like other anoplotheriids, it was endemic to Western Europe. The genus was described based on a left fragment of a maxilla from the Mazaterón Formation of the Duero Basin, from which its name derives, in 2009. Its dentition is mostly typical of the Anoplotheriinae but differs from related genera in the elongated and triangular third upper premolar and traits of the molars. It is thought to have been part of an endemic fauna that evolved in the Iberian Peninsula during the Middle Eocene, when climates were subtropical.

<i>Xiphodon</i> Extinct genus of endemic Palaeogene European artiodactyls

Xiphodon is the type genus of the extinct Palaeogene artiodactyl family Xiphodontidae. It, like other xiphodonts, was endemic to Western Europe and lived from the middle Eocene up to the earliest Oligocene. Fossils from Montmartre in Paris, France that belonged to X. gracilis were first described by the French naturalist Georges Cuvier in 1804. Although he assigned the species to Anoplotherium, he recognized that it differed from A. commune by its dentition and limb bones, later moving it to its own subgenus in 1822. Xiphodon was promoted to genus rank by other naturalists in later decades. It is today defined by the type species X. gracilis and two other species, X. castrensis and X. intermedium.

<i>Plagiolophus</i> (mammal) Extinct genus of mammals

Plagiolophus is an extinct genus of equoids belonging to the family Palaeotheriidae. It lived in Europe from the middle Oligocene to the early Oligocene. The type species P. minor was initially described by the French naturalist Georges Cuvier in 1804 based on postcranial material including a now-lost skeleton originally from the Paris Basin. It was classified to Palaeotherium the same year but was reclassified to the subgenus Plagiolophus, named by Auguste Pomel in 1847. Plagiolophus was promoted to genus rank by subsequent palaeontologists and today includes as many as seventeen species. As proposed by the French palaeontologist Jean A. Remy in 2004, it is defined by three subgenera: Plagiolophus, Paloplotherium, and Fraasiolophus.

<span class="mw-page-title-main">Cainotheriidae</span> Extinct family of mammals

Cainotheriidae is an extinct family of artiodactyls known from the Late Eocene to Middle Miocene of Europe. They are mostly found preserved in karstic deposits.

<i>Microbunodon</i> Extinct family of mammals

Microbunodon was a genus of extinct artiodactyl mammals in the family Anthracotheriidae. It lived between the upper Eocene and the lower Pliocene. Its fossil remains have been found in Europe and Asia.

<span class="mw-page-title-main">Helohyidae</span> Family of extinct artiodactyl mammals

Helohyidae were a group of artiodactyl mammals. They were most prominent in the mid-to-upper Eocene.

<i>Dichodon</i> (mammal) Extinct genus of endemic Palaeogene European artiodactyls

Dichodon is an extinct genus of Palaeogene artiodactyls belonging to the family Xiphodontidae. It was endemic to Western Europe and lived from the middle Eocene up to the earliest Oligocene. The genus was first erected by the British naturalist Richard Owen in 1848 based on dental remains from the fossil beds in Hordle, England. He noticed similar dentitions to contemporary artiodactyls like those of the Anoplotheriidae and Dichobunidae and references the name of the genus Dichobune. Eventually, it was found to be more closely related to Xiphodon and now includes 11 species, although one of them may be synonymous.

<i>Diplobune</i> Extinct genus of endemic Palaeogene European artiodactyls

Diplobune is an extinct genus of Palaeogene artiodactyls belonging to the family Anoplotheriidae. It was endemic to Europe and lived from the late Eocene to the early Oligocene. The genus was first erected as a subgenus of Dichobune by Ludwig Rütimeyer in 1862 based on his hypothesis of the taxon being a transitional form between "Anoplotherium" secundaria, previously erected by Georges Cuvier in 1822, and Dichobune. He based the genus etymology off of the two-pointed pillarlike shapes of the lower molars, which had since been a diagnosis of it. However, in 1870, Diplobune was elevated to genus rank by Oscar Fraas, who recognized that Diplobune was a distinct genus related to Anoplotherium and not Dichobune. After several revisions of the anoplotheriids, there are currently four known species of which D. minor is the type species.

<i>Dacrytherium</i> Extinct genus of endemic Palaeogene European artiodactyls

Dacrytherium is an extinct genus of Palaeogene artiodactyls belonging to the family Anoplotheriidae. It occurred from the Middle to Late Eocene of Western Europe and is the type genus of the subfamily Dacrytheriinae, the older of the two anoplotheriid subfamilies. Dacrytherium was first erected in 1876 by the French palaeontologist Henri Filhol, who recognised in his studies that it had dentition similar to the anoplotheriids Anoplotherium and Diplobune but differed from them by a deep preorbital fossa and a lacrimal fossa, the latter of which is where the genus name derives from. D. ovinum, originally classified in Dichobune, is the type species of Dacrytherium. Henri Filhol named D. elegans in 1884, and Hans Georg Stehlin named the species D. priscum and D. saturnini in 1910.

Ephelcomenus is an extinct genus of Palaeogene artiodactyls belonging to the Anoplotheriidae that were endemic to Western Europe. It contains one species E. filholi, which was first described by Richard Lydekker in 1889 but eventually classified to its own genus by the Swiss palaeontologist Johannes Hürzeler in 1938. It has an uncertain stratigraphic range, but some sources suggest that it was present in the Oligocene after the Grande Coupure turnover event of western Europe.

Robiatherium is an extinct genus of Palaeogene artiodactyls containing one species R. cournovense. The genus name derives from the locality of Robiac in France where some of its fossil were described plus the Greek θήρ/therium meaning "beast" or "wild animal". It was known only from the middle Eocene and, like other anoplotheriids, was endemic to Western Europe. The genus was erected by Jean Sudre in 1988 for a species originally attributed to the xiphodont genus Paraxiphodon in 1978. Robiatherium had dentitions typical of the subfamily Anoplotheriinae, differing from other genera by specific differences in the molars. It is one of the earliest-appearing anoplotheriine species in the fossil record as well as the earliest to have appeared in Central Europe.

<i>Mixtotherium</i> Extinct genus of endemic Palaeogene European artiodactyls

Mixtotherium is an extinct genus of Palaeogene artiodactyls belonging to the monotypic family Mixtotheriidae. Known informally as mixtotheriids or mixtotheres, these artiodactyls were endemic to western Europe and occurred from the middle to late Eocene. The genus and type species were both first established by the French naturalist Henri Filhol in 1880. Several species are well known by good skull fossils, which were informative enough to allow for classifications of the species to their own family. The Mixtotheriidae, first recognized by Helga Sharpe Pearson in 1927, is currently known by 7 valid species, although M. priscum is thought by several authors to be synonymous with M. gresslyi. The affinities of the Mixtotheriidae in relation to other artiodactyl families is uncertain, but it is currently thought to have been related to the Cainotherioidea and Anoplotheriidae.

Haplomeryx is an extinct genus of Palaeogene artiodactyls belonging to the family Xiphodontidae. It was endemic to Western Europe and lived from the middle Eocene up to the earliest Oligocene. Haplomeryx was first established as a genus by the German naturalist Max Schlosser in 1886 based on a molar tooth set from Quercy Phosphorites deposits. Three additional species were erected and classified to the xiphodontid genus while one other species, first recognized in 1822, was tentatively classified to it and remains unresolved in affinity.

<i>Amphimeryx</i> Extinct genus of endemic Palaeogene European artiodactyls

Amphimeryx is an extinct genus of Palaeogene artiodactyls belonging to the Amphimerycidae that was endemic to the central region of western Europe and lived from the Late Eocene to the Early Oligocene. It was erected in 1848 by the French palaeontologist Auguste Pomel, who argued that its dentition was roughly similar to those of ruminants. Hence, the etymology of the genus name means "near ruminant," of which it derives from the ancient Greek words ἀμφί (near) and μήρυξ (ruminant). The type species A. murinus was previously recognized as a species of Dichobune by the French palaeontologist Georges Cuvier in 1822 before its eventual reclassification to its own genus. Two other species A. collotarsus and A. riparius are recognized also today although the former may be synonymous with A. murinus while the latter is known solely by a now-lost fossil specimen.

<i>Pseudamphimeryx</i> Extinct genus of endemic Palaeogene European artiodactyls

Pseudamphimeryx is an extinct genus of Palaeogene artiodactyls belonging to the Amphimerycidae that was endemic to the central region of western Europe and lived from the Middle to Late Eocene. It was first erected in 1910 by the Swiss palaeontologist Hans Georg Stehlin, who assigned to it multiple species and noted specific differences from another amphimerycid Amphimeryx. As of present, it is known by six species, although the validity of P. valdensis has been questioned while the earliest-appearing species P. schosseri has been suggested to not be an amphimerycid.

<span class="mw-page-title-main">Amphimerycidae</span> Extinct family of artiodactyls

Amphimerycidae is an extinct family of artiodactyls that was endemic to western Europe that lived from the Middle Eocene to the Early Oligocene. With a taxonomic history extending as far back as 1804, the family was formally recognized by the Swiss palaeontologist Hans Georg Stehlin in 1910 and contains two genera: Amphimeryx and Pseudamphimeryx. Both amphimerycid genera are very similar to each other in terms of skull and dental anatomy but do have specific differences from each other. Both genera are best known from their fused cuboid bone and navicular bone, which together make up a single "cubonavicular bone" of the hind legs. This trait had long been used in support of the idea that they were ruminants by taxonomists. However, their classification to the Ruminantia had also been rejected by other taxonomists later on due to differences in dentition; the systematic position of the Amphimerycidae and close relatives in relation to the wider Artiodactyla, as a result, is unclear.

References

  1. Depéret, Charles (1906). "Los vertebrados del Oligocenico inferior de Tárrega. (prov. de Lerida)". Memorias de la Real Academia de Ciencias y Artes de Barcelona. 5 (21): 401–451.
  2. Lydekker, Richard (1885). "Notes on Three Genera of Fossil Artiodactyla, With Description of a New Species". The Geological Magazine or Monthly Journal of Geology. 3. 2 (2): 63–73. doi:10.1017/S0016756800005355. S2CID   85858413.
  3. Depéret, Charles (1908). "L'histoire géologique et la phylogènie des Anthracothéridés". Comptes rendus hebdomadaires des séances de l'Académie des sciences. 146: 158–162.
  4. McKenna, Malcolm; Bell, Susan K. (1997). Classification of Mammals: Above the Species Level. Columbia University Press. ISBN   978-0-231-52853-5.
  5. Stehlin, Hans Georg (1908). "Die Säugertiere des schweizerischen Eocaens. Sechster Teil: Choeropotamus – Cebochoerus – Choemorus – Haplobunodon – Rhagatherium – Mixtotherium". Abhandlungen der Schweizerischen Paläontologischen Gesellschaft. 35.
  6. 1 2 3 4 Stehlin, Hans Georg (1910). "Die Säugertiere des schweizerischen Eocaens. Sechster Teil: Catodontherium – Dacrytherium – Leptotherium – Anoplotherium – Diplobune – Xiphodon – Pseudamphimeryx – Amphimeryx – Dichodon – Haplomeryx – Tapirulus – Gelocus. Nachträge, Artiodactyla incertae sedis, Schlussbetrachtungen über die Artiodactylen, Nachträge zu den Perissodactylen". Abhandlungen der Schweizerischen Paläontologischen Gesellschaft. 36. Archived from the original on 5 August 2023. Retrieved 30 August 2023.
  7. Hooker, Jerry J. (1986). "Mammals from the Bartonian (middle late Eocene) of the Hampshire Basin, southern England". Bulletin of the British Museum (Natural History) Geology. 39 (4): 191–478.
  8. 1 2 3 4 5 6 7 8 Erfurt, Jörg; Métais, Grégoire (2007). "Endemic European Paleogene Artiodactyls". In Prothero, Donald R.; Foss, Scott E. (eds.). The Evolution of Artiodactyls. Johns Hopkins University Press. pp. 59–84.
  9. 1 2 Licht, Alexis; Métais, Grégoire; Coster, Pauline; İbilioğlu, Deniz; Ocakoğlu, Faruk; Westerweel, Jan; Mueller, Megan; Campbell, Clay; Mattingly, Spencer; Wood, Melissa C.; Beard, K. Christopher (2022). "Balkanatolia: The insular mammalian biogeographic province that partly paved the way to the Grande Coupure". Earth-Science Reviews. 226: 103929. Bibcode:2022ESRv..22603929L. doi: 10.1016/j.earscirev.2022.103929 .
  10. 1 2 Badiola, Ainara; De Vicuña, Nahia Jiménez; Perales-Gogenola, Leire; Gómez-Olivencia, Asier (2023). "First clear evidence of Anoplotherium (Mammalia, Artiodactyla) in the Iberian Peninsula: an update on the Iberian anoplotheriines". The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology. doi: 10.1002/ar.25238 . PMID   37221992. S2CID   258864256.
  11. 1 2 Weppe, Romain; Blondel, Cécile; Vianey-Liaud, Monique; Pélissié, Thierry; Orliac, Maëva Judith (2020). "A new Cainotherioidea (Mammalia, Artiodactyla) from Palembert (Quercy, SW France): Phylogenetic relationships and evolutionary history of the dental pattern of Cainotheriidae". Palaeontologia Electronica (23(3):a54). doi: 10.26879/1081 . S2CID   229490410.
  12. 1 2 Luccisano, Vincent; Sudre, Jean; Lihoreau, Fabrice (2020). "Revision of the Eocene artiodactyls (Mammalia, Placentalia) from Aumelas and Saint-Martin-de-Londres (Montpellier limestones, Hérault, France) questions the early European artiodactyl radiation". Journal of Systematic Palaeontology. 18 (19): 1631–1656. Bibcode:2020JSPal..18.1631L. doi:10.1080/14772019.2020.1799253. S2CID   221468663.
  13. 1 2 3 Sudre, Jean; Lecomte, Gérard (2000). "Relations et position systématique du genre Cuisitherium Sudre et al., 1983, le plus dérivé des artiodactyles de l'Éocène inférieur d'Europe" (PDF). Geodiversitas. 22 (3): 415–432.
  14. 1 2 Franzen, Jens Lorenz (2003). "Mammalian faunal turnover in the Eocene of central Europe". Geological Society of America Special Papers. 369: 455–461. doi:10.1130/0-8137-2369-8.455. ISBN   9780813723693.
  15. 1 2 Cuesta, Miguel-Ángel; Badiola, Ainara (2009). "Duerotherium sudrei gen. et sp. nov., a New Anoplotheriine Artiodactyl from the Middle Eocene of the Iberian Peninsula". Journal of Vertebrate Paleontology. 29 (1): 303–308. Bibcode:2009JVPal..29..303C. doi:10.1671/039.029.0110. JSTOR   20491092. S2CID   55546022.
  16. 1 2 3 4 Weppe, Romain (2022). Déclin des artiodactyles endémiques européens, autopsie d'une extinction (Thesis) (in French). University of Montpellier.
  17. 1 2 Hooker, Jerry J. (2007). "Bipedal browsing adaptations of the unusual Late Eocene–earliest Oligocene tylopod Anoplotherium (Artiodactyla, Mammalia)". Zoological Journal of the Linnean Society. 151 (3): 609–659. doi: 10.1111/j.1096-3642.2007.00352.x .
  18. 1 2 Weppe, Romain; Blondel, Cécile; Vianey-Liaud, Monique; Escarguel, Gilles; Pélissié, Thierry; Antoine, Pierre-Olivier; Orliac, Maëva Judith (2020). "Cainotheriidae (Mammalia, Artiodactyla) from Dams (Quercy, SW France): phylogenetic relationships and evolution around the Eocene–Oligocene transition (MP19–MP21)" (PDF). Journal of Systematic Palaeontology. 18 (7): 541–572. Bibcode:2020JSPal..18..541W. doi:10.1080/14772019.2019.1645754. S2CID   202026238.
  19. Ruiz-Colmenares, Miguel Ángel Cuesta (1998). "Presencia de Leptotheridium (Dacrytheriidae, Artiodactyla, Mammalia) en el yacimiento eocénico de Caenes (Cuenca del Duero, Salamanca, España)". Studia Geologica Salmanticensia. 34: 69–78.
  20. 1 2 Viret, Jean (1961). "Artiodactyla". Traitè de Palèontologie. Masson. pp. 887–1104.
  21. 1 2 Sudre, Jean (1969). "Les gisements de Robiac (Eocène supérieur) et leurs faunes de Mammifères". Palaeovertebrata. 2 (3): 95–156. doi:10.18563/pv.2.3.95-156.
  22. von Zittel, Karl Alfred (1925). Schlosser, Max (ed.). Text-Book of Paleontology. Volume III. Mammalia. Macmillan and Co. Limited. pp. 179–180.
  23. Lihoreau, Fabrice; Boisserie, Jean-Renaud; Viriot, Laurent; Brunet, Michel (2006). "Anthracothere dental anatomy reveals a late Miocene Chado-Libyan bioprovince". Proceedings of the National Academy of Sciences. 103 (23): 8763–8767. Bibcode:2006PNAS..103.8763L. doi: 10.1073/pnas.0603126103 . PMC   1482652 . PMID   16723392.
  24. Viret, Jean; Prudant, J. (1947). "Observations sur quelques caracteres anatomiques des Dacrytheridés". Extraits des Comptes Rendus de la Société Géologique de France: 26–27.
  25. Eronen, Jussi T.; Janis, Christine M.; Chamberlain, Charles Page; Mulch, Andreas (2015). "Mountain uplift explains differences in Palaeogene patterns of mammalian evolution and extinction between North America and Europe". Proceedings of the Royal Society B. 282 (1809). doi:10.1098/rspb.2015.0136. PMC   4590438 . PMID   26041349.
  26. 1 2 Maitre, Elodie (2014). "Western European middle Eocene to early Oligocene Chiroptera: systematics, phylogeny and palaeoecology based on new material from the Quercy (France)". Swiss Journal of Palaeontology . 133 (2): 141–242. Bibcode:2014SwJP..133..141M. doi: 10.1007/s13358-014-0069-3 . S2CID   84066785.
  27. Badiola, Ainara; Perales-Gogenola, Leire; Astibia, Humberto; Suberbiola, Xabier Pereda (2022). "A synthesis of Eocene equoids (Perissodactyla, Mammalia) from the Iberian Peninsula: new signs of endemism". Historical Biology. 34 (8): 1623–1631. Bibcode:2022HBio...34.1623B. doi:10.1080/08912963.2022.2060098. S2CID   248164842.
  28. 1 2 3 Aguilar, Jean-Pierre; Legendre, Serge; Michaux, Jacques (1997). "Synthèses et tableaux de corrélations". Actes du Congrès Bio-chroM'97. Mémoires et Travaux de l'EPHE Institut de Montpellier 21 (in French). École Pratique des Hautes Études-Sciences de la Vie et de la Terre, Montpellier. pp. 769–850.
  29. Blondel, Cécile (2001). "The Eocene-Oligocene ungulates from Western Europe and their environment" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 168 (1–2): 125–139. Bibcode:2001PPP...168..125B. doi:10.1016/S0031-0182(00)00252-2.
  30. Bai, Bin; Wang, Yuan-Qing; Theodor, Jessica M.; Meng, Jin (2023). "Small artiodactyls with tapir-like teeth from the middle Eocene of the Erlian Basin, Inner Mongolia, China". Frontiers in Earth Science. 11: 1–20. Bibcode:2023FrEaS..1117911B. doi: 10.3389/feart.2023.1117911 .
  31. Martin, Jeremy E.; Pochat-Cottilloux, Yohan; Laurent, Yves; Perrier, Vincent; Robert, Emmanuel; Antoine, Pierre-Olivier (2022). "Anatomy and phylogeny of an exceptionally large sebecid (Crocodylomorpha) from the middle Eocene of southern France". Journal of Vertebrate Paleontology. 42 (4). Bibcode:2022JVPal..42E3828M. doi:10.1080/02724634.2023.2193828. S2CID   258361595.
  32. Schmidt-Kittler, Norbert; Godinot, Marc; Franzen, Jens L.; Hooker, Jeremy J. (1987). "European reference levels and correlation tables". Münchner geowissenschaftliche Abhandlungen A10. Pfeil Verlag, München. pp. 13–31.