Magnaporthe rhizophila

Last updated

Contents

Magnaporthe rhizophila
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Sordariomycetes
Order: Magnaporthales
Family: Magnaporthaceae
Genus: Magnaporthe
Species:
M. rhizophila
Binomial name
Magnaporthe rhizophila
D.B. Scott & Deacon
Magnaporthe rhizophila
Information icon.svg
NA cap icon.svg Hymenium attachment is not applicable
NA cap icon.svgLacks a stipe
Transparent spore print icon.svg
Spore print is black
Mycomorphbox Question.pngEdibility is unknown

Magnaporthe rhizophila is a fungus species in the family Magnaporthaceae. These dark mycelial fungi are common pathogens of cereal and grass roots. [1] [2] Rice blast is one disease known to be caused by M. rhizophila and presents with vascular discoloration in the host organism. [3] The fungus lives best in drier humid conditions, explaining why it is most often found in the soils of Australia, South Africa, and the Southeastern United States. [2]

Development

Similar to other ascomycota, the lifecycle of M. rhizophila is split into two parts: the sexual and asexual stages. [3] The sexual lifestage is characterized by a globose (400-500 um wide) [1] fruit-like body that contains the sexual spores, called a perithecia, which occurs in either singles or multiples. Perithecia are flask-like shaped and contain asci, which are septated, unitunicate stalks of 8 ascospores. The ascospores are biseriate, fusiform, and slightly curved or helical when naive. [1] The perithecia is lined with cells called the peridium and has accessory structures called periphyses and paraphyses that surround the outside and inside of the structure, respectively. Paraphyses inside the perithecia dissolve once asci reach maturity. The asexual lifestage is characterized by asexual conidial structures (6-20x2-6 um). Conidiophores are either simple or branched. [1] [4]
Compared to the fruiting bodies of other Magnaporthe species, rhizophila is considered faster growing (0.8 cm/d at 28 °C) [4] with slightly longer and wider conidial cells.
M. rhizophila is homothallic, so it is self-fertile and can mate with similar mating types within its own mycelia. [5]

Ecology

Magnaporthe rhizophila is considered a necrotrophic parasite [5] because it relies on the nutrients and support of other organisms to thrive. It is a heterotroph since it is unequipped to sequester energy on its own, hence its symbiotic behavior. Magnaporthacaea are family-specific soil-borne parasites of Gramineae; rhizophila specifically colonizes the roots of millet. [6]
Spores from M. rhizophila are dispersed by natural manners such as wind, water, and animals. These spores then settle in soil where they grow and mature through asexual life cycles until it is optimal for the hyphae to resume a sexual cycle and a host organism is near. Rhizophila is only root-infecting; however many of its Magnaporthe relatives are both soil and aerial-infecting. [7] The fungus has an appressorium [5] structure which functions to elicit effector hormones to increase host susceptibility (2 clade-specific types of small specific proteins (SSP) [8] ). Lignitubers have been considered a response by host cells after infection as a response to fungal invasion. [9] However, rhizophila kills host cells in 5–6 weeks. [1]
M. rhizophila has darkly pigmented hyphae, composing mycelia that has a gray-brown color, darker than species in the rest of its family. [4] It is able to be cultured in vitro and survives on PDA (potato dextrose agar) plates.

Geographical distribution

Magnaporthe rhizophila does not necessarily require much water to survive, localizing in drier humid regions of Australia, South Africa, and the Southeastern United States. [2]

Genetics

From data derived from genetic testing, it was found that M. rhizophila originated in South Africa. Fungal fossils demonstrated that the phyla diverged 31 million years ago from other Sordariomycetes, and the phylogeny diverged 21 million years ago from pezizomycotina. [9] [6]
Magnaporthe species are grouped into three divergent clades; [5] rhizophila is in clade classification D along with M. poae and G. incrustans. Rhizophila belongs to the Magnaporthe family based on its ascospore morphology; however, it has been considered for the Gaeumannomyces because they also produce phialophora-like anamorphs instead of sympodial pyricularia. [7] M. rhizophila is the only known Magnaporthe species with a phialophora anamorph. [10] Given these similarities between families, M. rhizophila is highly hybridized with other species among these groups. [10]
The M. rhizophila genome is composed of 5.8% transposable elements, lower than other species in its family. [8]

Related Research Articles

<i>Ophiocordyceps sinensis</i> Species of fungus

Ophiocordyceps sinensis, known colloquially as caterpillar fungus, is an entomopathogenic fungus in the family Ophiocordycipitaceae. It is mainly found in the meadows above 3,500 metres (11,500 ft) on the Tibetan Plateau in Tibet and the Himalayan regions of Bhutan, India, and Nepal. It parasitizes larvae of ghost moths and produces a fruiting body which is valued in traditional Chinese medicine as an aphrodisiac. Caterpillar fungus contains the compound cordycepin, an adenosine derivative. However, the fruiting bodies harvested in nature usually contain high amounts of arsenic and other heavy metals, so they are potentially toxic and sales have been strictly regulated by China's State Administration for Market Regulation since 2016.

Heterothallic species have sexes that reside in different individuals. The term is applied particularly to distinguish heterothallic fungi, which require two compatible partners to produce sexual spores, from homothallic ones, which are capable of sexual reproduction from a single organism.

<i>Diplocarpon rosae</i> Species of fungus

Diplocarpon rosae is a fungus that creates the rose black spot disease. Because it was observed by people of various countries around the same time, the nomenclature for the fungus varied with about 25 different names. The asexual stage is now known to be Marssonina rosae, while the sexual and most common stage is known as Diplocarpon rosae.

<span class="mw-page-title-main">Erysiphales</span> Order of fungi

Erysiphales are an order of ascomycete fungi. The order contains one family, Erysiphaceae. Many of them cause plant diseases called powdery mildew.

<span class="mw-page-title-main">Phomopsis cane and leaf spot</span> Fungal plant disease

Phomopsis cane and leaf spot occurs wherever grapes are grown. Phomopsis cane and leaf spot is more severe in grape-growing regions characterized by a humid temperate climate through the growing season. Crop losses up to 30% have been reported to be caused by Phomopsis cane and leaf spot.

<i>Epichloë</i> Genus of fungi

Epichloë is a genus of ascomycete fungi forming an endophytic symbiosis with grasses. Grass choke disease is a symptom in grasses induced by some Epichloë species, which form spore-bearing mats (stromata) on tillers and suppress the development of their host plant's inflorescence. For most of their life cycle however, Epichloë grow in the intercellular space of stems, leaves, inflorescences, and seeds of the grass plant without incurring symptoms of disease. In fact, they provide several benefits to their host, including the production of different herbivore-deterring alkaloids, increased stress resistance, and growth promotion.

<i>Ceratocystis fimbriata</i> Species of fungus

Ceratocystis fimbriata is a fungus and a plant pathogen, attacking such diverse plants as the sweet potato and the tapping panels of the Para rubber tree. It is a diverse species that attacks a wide variety of annual and perennial plants. There are several host-specialized strains, some of which, such as Ceratocystis platani that attacks plane trees, are now described as distinct species.

<i>Mycosphaerella brassicicola</i> Species of fungus

Mycosphaerella brassicicola is a plant pathogen. The pathogen is the teleomorph phase of an ascomycete fungus, which causes the ring spot disease of brassicas. The supplementary anamorph phase Asteromella brassicae produces conidia through its asexual reproduction, however these spores are not confirmed to cause disease in host plants.

<i>Gibberella zeae</i> Species of fungus

Gibberella zeae, also known by the name of its anamorph Fusarium graminearum, is a fungal plant pathogen which causes fusarium head blight (FHB), a devastating disease on wheat and barley. The pathogen is responsible for billions of dollars in economic losses worldwide each year. Infection causes shifts in the amino acid composition of wheat, resulting in shriveled kernels and contaminating the remaining grain with mycotoxins, mainly deoxynivalenol (DON), which inhibits protein biosynthesis; and zearalenone, an estrogenic mycotoxin. These toxins cause vomiting, liver damage, and reproductive defects in livestock, and are harmful to humans through contaminated food. Despite great efforts to find resistance genes against F. graminearum, no completely resistant variety is currently available. Research on the biology of F. graminearum is directed towards gaining insight into more details about the infection process and reveal weak spots in the life cycle of this pathogen to develop fungicides that can protect wheat from scab infection.

Eutypella canker is a plant disease caused by the fungal pathogen Eutypella parasitica. This disease is capable of infecting many species of maple trees and produces a large, distinguishable canker on the main trunk of the tree. Infection and spread of the disease is accomplished with the release of ascospores from perithecia. Therefore, the best way to manage the Eutypella canker is to remove trees that have been infected. If infected, it can decrease the quality of wood cut for lumber and can thus have a negative economic impact.

<span class="mw-page-title-main">Orbiliaceae</span> Family of fungi

The Orbiliaceae are a family of saprobic sac fungi. It is the only family in the monotypic class Orbiliomycetes and the monotypic order Orbiliales. The family was first described by John Axel Nannfeldt in 1932 and now contains 288 species in 12 genera. Members of this family have a widespread distribution, but are more prevalent in temperate regions. Some species in the Orbiliaceae are carnivorous fungi, and have evolved a number of specialized mechanisms to trap nematodes.

<i>Helicobasidium</i> Genus of fungi


Helicobasidium is a genus of fungi in the subdivision Pucciniomycotina. Basidiocarps are corticioid (patch-forming) and are typically violet to purple. Microscopically they have auricularioid basidia. Asexual anamorphs, formerly referred to the genus Thanatophytum, produce sclerotia. Conidia-bearing anamorphs are parasitic on rust fungi and are currently still referred to the genus Tuberculina.

<span class="mw-page-title-main">Magnaporthaceae</span> Family of fungi

The Magnaporthaceae are a family of fungi in the order Magnaporthales. It was circumscribed by Paul F. Cannon in 1994 for a group of grass-associated fungi centered on Magnaporthe (Nakataea). Magnaporthaceae have a harpophora-like asexual morphology and are often associated with roots of grasses or cereals.

Magnaporthiopsis is a genus of ascomycete fungi. It has three species.

<i>Hypomyces cervinigenus</i> Species of fungus

Hypomyces cervinigenus is a parasitic ascomycete fungus that grows on elfin saddle (Helvella) mushrooms in Europe and North America.

<span class="mw-page-title-main">Hypoxylon canker of shade trees</span> Tree disease

Hypoxylon canker of shade trees is a weak ascomycete fungus that negatively affects growth and can eventually lead to the death of weak or diseased host trees. There are many different species that affect different trees. For example, Hypoxylon atropunctatum, a common species, is found on oak trees, Hypoxylon tinctor affects sycamore trees, and Hypoxylon mammatum infests aspen trees.

<span class="mw-page-title-main">Pyriculariaceae</span> Family of fungi

The Pyriculariaceae are a family of ascomycete fungi in the order Magnaporthales. It was introduced by S. Klaubauf, M.H. Lebrun & P.W. Crous in 2014.

Collariella bostrychodes is a fungal decomposer of lignin and carbohydrate in the family Chaetomiaceae commonly found in soil and dung. The fungus is distinguished by a darkened collar-like ostiole around the ostiolar pore, giving the fungus its name. The fungus is highly variable in shape and form, giving raise to the belief that there are two subclades in the species. The ascospores range from lemon-shaped to nearly spherical with slightly pointed ends. It can grow to be pale green and later turn pale bluish grey or olivaceous with age. The fungus produces the toxic secondary metabolite, chaetochromin.

Microascus manginii is a filamentous fungal species in the genus Microascus. It produces both sexual (teleomorph) and asexual (anamorph) reproductive stages known as M. manginii and Scopulariopsis candida, respectively. Several synonyms appear in the literature because of taxonomic revisions and re-isolation of the species by different researchers. M. manginii is saprotrophic and commonly inhabits soil, indoor environments and decaying plant material. It is distinguishable from closely related species by its light colored and heart-shaped ascospores used for sexual reproduction. Scopulariopsis candida has been identified as the cause of some invasive infections, often in immunocompromised hosts, but is not considered a common human pathogen. There is concern about amphotericin B resistance in S. candida.

Pleurothecium is a genus of terrestrial and freshwater fungi in the family Pleurotheciaceae and the monotypic order Pleurotheciales. It is typified by Pleurothecium recurvatum as the type species (Morgan) Höhn, which has the synonym of Carpoligna pleurotheciiF.A. Fernández & Huhndorf, Mycologia 9: 253. 1999.

References

  1. 1 2 3 4 5 Scott, D.B.; Deacon, J.W. (1983). "Magnaporthe rhizophila sp.nov., a dark mycelial fungus with a Phialophora conidial state, from cereal roots in South Africa". Transactions of the British Mycological Society. 81 (1): 77–81. doi:10.1016/s0007-1536(83)80206-x. ISSN   0007-1536.
  2. 1 2 3 Feng, Jia-Wei; Liu, Wei-Ting; Chen, Jia-Jie; Zhang, Chu-Long (2021-05-06). "Biogeography and Ecology of Magnaporthales: A Case Study". Frontiers in Microbiology. 12: 654380. doi: 10.3389/fmicb.2021.654380 . ISSN   1664-302X. PMC   8134742 . PMID   34025609.
  3. 1 2 Krause, R.A.; Webster, R.K. (1972). "The morphology, taxonomy, and sexuality of rice stem rot fungus, Magnaporthe salvinii". Mycologia (64): 103–114. doi:10.1080/00275514.1972.12019240.
  4. 1 2 3 Luo, J.; Walsh, E.; Zhang, N. (2014). "Four new species in Magnaporthaceae from grass roots in New Jersey Pine Barrens". Mycologia. 106 (3): 580–588. doi:10.3852/13-306. PMID   24871590. S2CID   1501279.
  5. 1 2 3 4 Luo, J.; Ning, Z. (2013). "Magnoporthiopsis, a new genus in Magnporthaceae (Ascomycota)". Mycologia. 105 (4): 1019–1029. doi:10.3852/12-359. PMID   23449077. S2CID   11109937.
  6. 1 2 Deacon, J.W. (1996). "Ecological Implications of Recognition Events in the Pre-Infection Stages of Root Pathogens". The New Phytologist. 133 (1): 135–145. doi:10.1111/j.1469-8137.1996.tb04349.x.
  7. 1 2 Zhang, N.; Zhao, Shuang; Shen, Qirong (2011). "A six-gene phylogeny reveals the evolution of mode of infection in the rice blast fungus and allied species". Mycologia. 103 (6): 1267–1276. doi:10.3852/11-022. PMID   21642347. S2CID   5212061.
  8. 1 2 Zhang, N.; Cai, G.; Price, D.C.; Crouch, J.A.; Gladieux, P. (2018). "Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi". Scientific Reports. 8 (1): 5862. doi:10.1038/s41598-018-24301-6. PMC   5897359 . PMID   29651164.
  9. 1 2 Griffiths, D.A., The development of lignotubers in roots after infection by Verticillium dahliae Kleb, Canadian Journal of Microbiology
  10. 1 2 Henson, J (1992). "DNA hybridization and polymerase chain reaction (PCR) tests for identification of Gaumannomyces, Phialophora, and Magnaporthe isolates". Mycological Research. 96 (8): 629–636. doi:10.1016/S0953-7562(09)80488-7.