Material input per unit of service

Last updated

Material input per unit of service (MIPS) is an economic concept, originally developed at the Wuppertal Institute, Germany in the 1990s. The MIPS concept can be used to measure eco-efficiency of a product or service and applied in all scales from a single product to complex systems. The calculation takes into account materials required to produce a product or service. The total material input (MI) is divided by the number of service units (S). For example, in case of a passenger car, the number of service units is the total number of passenger kilometres during the whole life span of the vehicle. The lower the material input per kilometre, the more eco-efficient is the vehicle. The whole life-cycle of a product or service is measured when MIPS values are calculated. [1] This allows comparisons of resource consumption of different solutions to produce the same service. When a single product is examined, the MIPS calculations reveal the magnitude of resource use along the life-cycle and help to focus efforts on the most significant phases to reduce environmental burden of the product.

Contents

Increasing resource efficiency

There are two ways to reduce the material consumption per unit of service, the material input (MI) of the product can be reduced or amount of service units (S) can be increased. Material input in the production phase can be reduced by using less energy or raw materials. Also transport chains can be rationalized. In the use phase the material input per unit of service can be reduced when amount of service produced is increased. For instance in case of a newspaper the material input can be reduced by using recycled paper instead of primary. Material input per reader decreases when the same paper is shared with several persons. High quality products and availability of spares potentially increase the service life of the product. When the service life of a product is increased, the material consumption per unit of time decreases. Usually services like car sharing also help to reduce MIPS values since fewer products are needed to produce the service for greater number of people. [2]

Factor X concept

The Factor X concept was coined by Prof. Friedrich Schmidt-Bleek. [3] The factor targets refer to dematerializing of our economies. The Factor Ten Club founded in 1994 and the Factor 10 Institute founded in 1997 support the dematerialization target. It has been proposed that material flows in the industrialized countries should be decreased by factor 10 to reach more sustainable level of material use. Aim of factor targets is to increase resource productivity and increase the wealth created from the resources. The factor concept can be applied on microeconomic and macroeconomic levels. For instance the Wuppertal Institute presents micro-level best practices related to Factor Four guideline. [4]

Natural resource categories

The MIPS method can be used to measure natural resource consumption in five categories, viz. abiotic and biotic resources, earth movements in agriculture and silviculture, water and air. [1] Abiotic resources refer to non-renewable resources like minerals, fossil energy sources and soil excavations. Biotic resources refer to renewable resources like plant biomass. Earth movements include mechanical movements and erosion. Water includes surface, ground and deep ground water used by humans. Air is calculated when it is used in combustion processes or chemically or physically transformed. The concept of total material requirement (TMR) used in many cases used in macro-level statistics and it refers to sum of abiotic and biotic resources and erosion.

Material intensity factors

The cornerstone of MIPS calculations are the material intensity factors. The Wuppertal Institute has the most extensive list of MI-factors. [5] Factors are provided for a wide range of basic materials and energy. The factors indicate how many kilograms of natural resources in each of the five natural resource categories are used or transferred in the ecosystem to produce one kilogram of certain material or a unit of energy.

Concept of ecological backpack

Ecological backpack is calculated by subtracting the net weight of the products from the total material input of it. [1] The ecological backpack illustrates the hidden flows which cannot be seen in the final product. [3] In many cases vast amount of resources are used or transferred in the developing world where the raw material production takes place. It is important to find tools to illustrate these mass movements since consumption of the products by large part takes place in the developed world. In many cases the weight of backpacks are multiple times heavier than the product itself.

Scope and limitations of the MIPS method

The MIPS method measures the life-cycle wide material inputs required to produce a product or service. The MIPS method doesn’t straightforwardly measure waste, pollution and other negative outputs produced by the human economy. However, all material inputs become outputs of the economy at some point, and when inputs are reduced also negative outputs like waste will decrease. [1] MIPS provides a rough but easily understandable tool to measure overall volume and efficiency of resource use. Røpke 2001: 130 states: “As the number of pollution problems is very large, it is difficult to construct reasonable indicators for overall environmental impact from the output side. [6] The focus on inputs is thus a way to avoid drowning in detail.” Since MIPS does not take into account for instance ecotoxicity of materials and processes it should be used together with other methods taking into account these issues.

Criticism towards the MIPS concept

The most common criticism towards MIPS method is related to the fact that MIPS does not take into account ecotoxicity of materials. Schmidt-Bleek reminds us that also non-toxic material flows can affect the environment. [2] The current[ when? ] climate issue and CO2 emissions show that also vast amounts of non-toxic materials may contribute to environmental problems.

Critiques have also noted that extensive material flows occur in natural processes. However, the pace on which humans transfer materials is so fast that the environment cannot keep up with it and reproduce itself. [2]

Conducted MIPS studies

MIPS-concept has been applied in multiple research projects, especially in Germany and Finland. The most extensive projects in Finland concerned transport sector and household consumption. FIN-MIPS Transport project [7] studied the Finnish transport system both from passenger and goods transport perspective in 2003–2005 whereas the FIN-MIPS Household project [8] examined material intensity of housing, mobility, foodstuffs, household goods, tourism, leisure and sport activities in Finland and on sample of 27 Finnish households.

Related Research Articles

Ecosystem Community of living organisms together with the nonliving components of their environment

An ecosystem consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the system through photosynthesis and is incorporated into plant tissue. By feeding on plants and on one another, animals play an important role in the movement of matter and energy through the system. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and microbes.

Sustainable development Mode of human development

Sustainable development is an organizing principle for meeting human development goals while also sustaining the ability of natural systems to provide the natural resources and ecosystem services on which the economy and society depend. The desired result is a state of society where living conditions and resources are used to continue to meet human needs without undermining the integrity and stability of the natural system. Sustainable development can be defined as development that meets the needs of the present without compromising the ability of future generations to meet their own needs. It is interlinked with the concept of sustainability.

Ecological niche Fit of a species living under specific environmental conditions

In ecology, a niche is the match of a species to a specific environmental condition. It describes how an organism or population responds to the distribution of resources and competitors and how it in turn alters those same factors. "The type and number of variables comprising the dimensions of an environmental niche vary from one species to another [and] the relative importance of particular environmental variables for a species may vary according to the geographic and biotic contexts".

Overconsumption describes a situation where the use of a renewable natural resource exceeds its capacity to regenerate. A prolonged pattern of overconsumption leads to the eventual loss of resource bases. The term overconsumption is quite controversial in use and does not necessarily have a single unifying definition. Overconsumption is driven several factors of the current global economy, including forces like consumerism, planned obsolescence, and other unsustainable business models and can be contrasted with sustainable consumption.

The Wuppertal Institute for Climate, Environment and Energy is a German research institution for sustainability research concentrating on impacts and practical application. It explores and develops models, strategies and instruments to support sustainable development at local, national and international levels. Research at the Wuppertal Institute focuses on ecology and its relation to economy and society. Special emphasis is put on analyzing and supporting technological and social innovations that decouple prosperity of economic growth from the use of natural resources. The organization's activities are centered on developing transformation processes aimed at shaping a climate-friendly and resource-efficient world.

Life-cycle assessment Methodology for assessing environmental impacts

Life cycle assessment or LCA is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service. For instance, in the case of a manufactured product, environmental impacts are assessed from raw material extraction and processing (cradle), through the product's manufacture, distribution and use, to the recycling or final disposal of the materials composing it (grave).

As countries and regions around the world began to develop, it slowly became evident that industrialization and economic growth come hand in hand with environmental degradation. Eco-efficiency has been proposed as one of the main tools to promote a transformation from unsustainable development to one of sustainable development. It is based on the concept of creating more goods and services while using fewer resources and creating less waste and pollution. "It is measured as the ratio between the (added) value of what has been produced and the (added) environment impacts of the product or service ." The term was coined by the World Business Council for Sustainable Development (WBCSD) in its 1992 publication "Changing Course," and at the 1992 Earth Summit, eco-efficiency was endorsed as a new business concept and means for companies to implement Agenda 21 in the private sector. Ergo the term has become synonymous with a management philosophy geared towards sustainability, combining ecological and economic efficiency.

A limiting factor is a variable of a system that causes a noticeable change in output or another measure of a type of system. The limiting factor is in a pyramid shape of organisms going up from the producers to consumers and so on. A factor not limiting over a certain domain of starting conditions may yet be limiting over another domain of starting conditions, including that of the factor.

Waste hierarchy Tool to evaluate processes protecting the environment

Waste hierarchy is a tool used in the evaluation of processes that protect the environment alongside resource and energy consumption from most favourable to least favourable actions. The hierarchy establishes preferred program priorities based on sustainability. To be sustainable, waste management cannot be solved only with technical end-of-pipe solutions and an integrated approach is necessary.

Eco-sufficiency, or simply sufficiency, refers to the concept or strategy to reduce the environmental footprint of modern societies. The term was popularised by authors such as Thomas Princen, a professor at MIT, in his 2005 book ‘The Logic of Sufficiency’. As a goal, sufficiency is about ensuring that all humans can live a good life without overshooting the ecological limits of the Earth, while at the same time defining what that good life may consist of. Princen argues that ‘seeking enough when more is possible is both intuitive and rational - personally, organizationally and ecologically. And under global ecological constraint, it is ethical.'

Waste minimisation Process that involves reducing the amount of waste produced in society

Waste minimisation is a set of processes and practices intended to reduce the amount of waste produced. By reducing or eliminating the generation of harmful and persistent wastes, waste minimisation supports efforts to promote a more sustainable society. Waste minimisation involves redesigning products and processes and/or changing societal patterns of consumption and production.

Material flow analysis (MFA), also referred to as substance flow analysis (SFA), is an analytical method to quantify flows and stocks of materials or substances in a well-defined system. MFA is an important tool to study the bio-physical aspects of human activity on different spatial and temporal scales. It is considered a core method of industrial ecology or anthropogenic, urban, social and industrial metabolism. MFA is used to study material, substance, or product flows across different industrial sectors or within ecosystems. MFA can also be applied to a single industrial installation, for example, for tracking nutrient flows through a waste water treatment plant. When combined with an assessment of the costs associated with material flows this business-oriented application of MFA is called material flow cost accounting. MFA is an important tool to study the circular economy and to devise material flow management. Since the 1990s, the number of publications related to material flow analysis has grown steadily. Peer-reviewed journals that publish MFA-related work include the Journal of Industrial Ecology, Ecological Economics, Environmental Science and Technology, and Resources, Conservation, and Recycling.

Factor Ten is a social and economic policy program developed by the Factor Ten institute with the stated goal of "provid[ing] practical support for achieving significant advances in sustainable value creation, in particular through increases in resource productivity throughout the economy.

Resource refers to all the materials available in our environment which are technologically accessible, economically feasible and culturally sustainable and help us to satisfy our needs and wants. Resources can broadly be classified upon their availability — they are classified into renewable and non-renewable resources. They can also be classified as actual and potential on the basis of the level of development and use, on the basis of origin they can be classified as biotic and abiotic, and on the basis of their distribution, as ubiquitous and localised. An item becomes a resource with time and developing technology. The benefits of resource utilization may include increased wealth, proper functioning of a system, or enhanced well-being. From a human perspective, a natural resource is anything obtained from the environment to satisfy human needs and wants. From a broader biological or ecological perspective, a resource satisfies the needs of a living organism.

This is a glossary of environmental science.

Environmentally sustainable design is the philosophy of designing physical objects, the built environment, and services to comply with the principles of ecological sustainability.

Economy-wide material flow accounts (EW-MFA) is a framework to compile statistics linking flows of materials from natural resources to a national economy. EW-MFA are descriptive statistics, in physical units such as tonnes per year.

In economic and environmental fields, decoupling refers to an economy that would be able to grow without corresponding increases in environmental pressure. In many economies, increasing production (GDP) currently raises pressure on the environment. An economy that would be able to sustain economic growth while reducing the amount of resources such as water or fossil fuels used and delink environmental deterioration at the same time would be said to be decoupled. Environmental pressure is often measured using emissions of pollutants, and decoupling is often measured by the emission intensity of economic output. Examples of absolute long-term decoupling are rare, but recently some industrialized countries have decoupled GDP growth from both production- and, to a lesser extent, consumption-based CO2 emissions.

Environmentally extended input–output analysis (EEIOA) is used in environmental accounting as a tool which reflects production and consumption structures within one or several economies. As such, it is becoming an important addition to material flow accounting.

Sustainable Materials Management is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how a society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle new opportunities can be found to reduce environmental impacts, conserve resources, and reduce costs.

References

  1. 1 2 3 4 Ritthoff, M; Rohn, H; Liedtke, C (2003). Calculating MIPS – Resource productivity of products and services. Wuppertal Institute. Accessed 22 February 2012
  2. 1 2 3 Schmidt-Bleek, F (1993), The Fossil Makers , retrieved February 22, 2012
  3. 1 2 Robèrt, K.-H., Schmidt-Bleek, B., Aloisi de Larderel, J., Basile G., Jansen, J.L., Kuehr, R., Price Thomas, P., Suzuki, M., Hawken, P. and M. Wackernagel. (2002). Strategic sustainable development – selection, design and synergies of applied tools. Journal of Cleaner Production. 10: 197–214.
  4. "The Wuppertal Institute, Factor Four". Archived from the original on 2015-09-19. Retrieved 2013-01-18.
  5. The Wuppertal Institute, List of MI-factors (2003) Archived 2014-02-12 at the Wayback Machine
  6. Røpke, I. (2001). The environmental impact of changing consumption patterns: a survey. International Journal of Environment and Pollution. 15:2 127–145.
  7. Lähteenoja, S., M. Lettenmeier and A. Saari.(2006). Transport MIPS The natural resource consumption of the Finnish Transportation system. The Finnish Environment 820en.
  8. Kotakorpi, E., S. Lähteenoja, and M. Lettenmeier.(2008). In press.

Further reading