Names | |
---|---|
Preferred IUPAC name Methanesulfonic acid | |
Other names Methylsulfonic acid, MSA; Mesylic acid | |
Identifiers | |
3D model (JSmol) | |
1446024 | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.000.817 |
EC Number |
|
1681 | |
PubChem CID | |
UNII | |
UN number | 2585 |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
CH4O3S | |
Molar mass | 96.10 g·mol−1 |
Appearance | Clear, colourless liquid |
Density | 1.48 g/cm3 |
Melting point | 17 to 19 °C (63 to 66 °F; 290 to 292 K) |
Boiling point | 167 °C (333 °F; 440 K) at 10 mmHg, 122 °C/1 mmHg |
miscible | |
Solubility | Miscible with methanol, diethyl ether. Immiscible with hexane |
log P | −2.424 [1] |
Acidity (pKa) | −1.9 [2] |
Hazards | |
GHS labelling: | |
Danger | |
H314 | |
P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P405, P501 | |
Safety data sheet (SDS) | Oxford MSDS |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Methanesulfonic acid (MsOH, MSA) or methanesulphonic acid (in British English) is an organosulfuric, colorless liquid with the molecular formula CH3SO3H and structure H3C−S(=O)2−OH . It is the simplest of the alkylsulfonic acids (R−S(=O)2−OH). Salts and esters of methanesulfonic acid are known as mesylates (or methanesulfonates, as in ethyl methanesulfonate). It is hygroscopic in its concentrated form. Methanesulfonic acid can dissolve a wide range of metal salts, many of them in significantly higher concentrations than in hydrochloric acid (HCl) or sulfuric acid (H2SO4). [3]
German chemist Hermann Kolbe discovered MSA between 1842 and 1845 and originally termed it methyl hyposulphuric acid. [4] [5] [6]
The discovery stemmed from earlier work by Berzelius and Marcet in 1813, who treated carbon disulfide with moist chlorine and produced a compound they named "sulphite of chloride of carbon". By reacting it with barium hydroxide Kolbe demonstrated it to actually be trichloromethylsulfonyl chloride (CCl₃SO₂Cl in modern notation). [4] [5]
2 CCl3SO2Cl + 3 Ba(OH)2 → Ba(CCl3SO3)2 + 3 BaCl2 + 2 H2O
From resulting barium trichloromethylsulfonate Kolbe isolated the free acid, which he was then able to sequentially dechlorinate by electrolytically generated atomic hydrogen to ultimately yield MSA. [4] [5]
CCl3SO3H + 3 H → CHCl2SO3H + 2 H + HCl → … → CH3SO3H + 3 HCl
Kolbe's research on methanesulfonic and chloroacetic acids was hailed by Berzelius as strong evidence for his theory of copulated compounds, a modification of radical theory to accommodate substitution reactions which posited the combination of organic and inorganic moieties without significantly altering the properties of the latter. [6]
Later in the 19th century, the name transitioned to methyl sulphonic acid. Other historical laboratory synthesis routes included oxidizing methanethiol, dimethyl disulfide or methyl thiocyanate with nitric acid. [5]
The first commercial production of MSA, developed in the 1940s by Standard Oil of Indiana, was based on oxidation of dimethylsulfide by O
2 from air. Although inexpensive, this process suffered from a poor product quality and explosion hazards.
Starting from the 1960s, it received a shortened name of mesylic acid. [7]
In 1967, the Pennwalt Corporation (USA) developed a different process for dimethylsulfide (as a water-based emulsion) oxidation using chlorine, followed by extraction-purification. In 2022 this chlorine-oxidation process was used only by Arkema (France) for making high-purity MSA. This process is not popular on a large scale, because it co-produces large quantities of hydrochloric acid.
Between years 1970 and 2000 MSA was used only on a relatively small-scale in niche markets (for example, in the microelectronic and electroplating industries since the 1980s), which was mainly due to its rather high price and limited availability. However, this situation changed around 2003, when BASF launched commercial production of MSA in Ludwigshafen based on a modified version of the aforementioned air oxidation process, oxidising dimethyldisulfide with nitric acid which is then restored using atmospheric oxygen. The former is produced in one step from methanol from syngas, hydrogen and sulfur. [8]
An even better (lower-cost and environmentally friendlier) process of making methanesulfonic acid was developed in 2016 by Grillo-Werke AG (Germany). It is based on a direct reaction between methane and oleum at around 50 °C and 100 bar in the presence of a potassium persulfate initiator. [9] Further addition of sulfur trioxide gives methanedisulfonic acid instead. [10] This technology was acquired and commercialized by BASF in 2019. [11]
Since ca. 2000 methanesulfonic acid has become a popular replacement for other acids in numerous industrial and laboratory applications, because it:
The closely related p-toluenesulfonic acid (PTSA) is solid.
Methanesulfonic acid can be used in the generation of borane (BH3) by reacting methanesulfonic acid with NaBH4 in an aprotic solvent such as THF or DMSO, the complex of BH3 and the solvent is formed. [12]
Solutions of methanesulfonic acid are used for the electroplating of tin and tin-lead solders. It is displacing the use of fluoroboric acid, which releases corrosive and volatile hydrogen fluoride. [13]
Methanesulfonic acid is also a primary ingredient in rust and scale removers. [14] It is used to clean off surface rust from ceramic, tiles and porcelain which are usually susceptible to acid attack.
In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.
In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom bonded to two organyl groups. They have the general formula R−O−R′, where R and R′ represent the organyl groups. Ethers can again be classified into two varieties: if the organyl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. A typical example of the first group is the solvent and anaesthetic diethyl ether, commonly referred to simply as "ether". Ethers are common in organic chemistry and even more prevalent in biochemistry, as they are common linkages in carbohydrates and lignin.
In chemistry, an ester is a functional group derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.
Hydrolysis is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile.
Perchloric acid is a mineral acid with the formula HClO4. It is an oxoacid of chlorine. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxidizer when hot, but aqueous solutions up to approximately 70% by weight at room temperature are generally safe, only showing strong acid features and no oxidizing properties. Perchloric acid is useful for preparing perchlorate salts, especially ammonium perchlorate, an important rocket fuel component. Perchloric acid is dangerously corrosive and readily forms potentially explosive mixtures.
Nitrous acid is a weak and monoprotic acid known only in solution, in the gas phase, and in the form of nitrite salts. It was discovered by Carl Wilhelm Scheele, who called it "phlogisticated acid of niter". Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagents in azo coupling reactions to give azo dyes.
In organosulfur chemistry, a sulfonate is a salt, anion or ester of a sulfonic acid. Its formula is R−S(=O)2−O−, containing the functional group −S(=O)2−O−, where R is typically an organyl group, amino group or a halogen atom. Sulfonates are the conjugate bases of sulfonic acids. Sulfonates are generally stable in water, non-oxidizing, and colorless. Many useful compounds and even some biochemicals feature sulfonates.
Cerium(IV) sulfate, also called ceric sulfate, is an inorganic compound. It exists as the anhydrous salt Ce(SO4)2 as well as a few hydrated forms: Ce(SO4)2(H2O)x, with x equal to 4, 8, or 12. These salts are yellow to yellow/orange solids that are moderately soluble in water and dilute acids. Its neutral solutions slowly decompose, depositing the light yellow oxide CeO2. Solutions of ceric sulfate have a strong yellow color. The tetrahydrate loses water when heated to 180-200 °C.
In organosulfur chemistry, a mesylate is any salt or ester of methanesulfonic acid. In salts, the mesylate is present as the CH3SO−3 anion. When modifying the international nonproprietary name of a pharmaceutical substance containing the group or anion, the spelling used is sometimes mesilate.
In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.
Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides/oxychlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.
Sulfamic acid, also known as amidosulfonic acid, amidosulfuric acid, aminosulfonic acid, sulphamic acid and sulfamidic acid, is a molecular compound with the formula H3NSO3. This colourless, water-soluble compound finds many applications. Sulfamic acid melts at 205 °C before decomposing at higher temperatures to water, sulfur trioxide, sulfur dioxide and nitrogen.
In organic chemistry, a sulfoxide, also called a sulphoxide, is an organosulfur compound containing a sulfinyl functional group attached to two carbon atoms. It is a polar functional group. Sulfoxides are oxidized derivatives of sulfides. Examples of important sulfoxides are alliin, a precursor to the compound that gives freshly crushed garlic its aroma, and dimethyl sulfoxide (DMSO), a common solvent.
An oxyacid, oxoacid, or ternary acid is an acid that contains oxygen. Specifically, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bonded to oxygen that can dissociate to produce the H+ cation and the anion of the acid.
Triflic acid, the short name for trifluoromethanesulfonic acid, TFMS, TFSA, HOTf or TfOH, is a sulfonic acid with the chemical formula CF3SO3H. It is one of the strongest known acids. Triflic acid is mainly used in research as a catalyst for esterification. It is a hygroscopic, colorless, slightly viscous liquid and is soluble in polar solvents.
Uranium tetrachloride is an inorganic compound, a salt of uranium and chlorine, with the formula UCl4. It is a hygroscopic olive-green solid. It was used in the electromagnetic isotope separation (EMIS) process of uranium enrichment. It is one of the main starting materials for organouranium chemistry.
Methanesulfonyl chloride is an organosulfur compound with the formula CH3SO2Cl. Using the organic pseudoelement symbol Ms for the methanesulfonyl group CH3SO2–, it is frequently abbreviated MsCl in reaction schemes or equations. It is a colourless liquid that dissolves in polar organic solvents but is reactive toward water, alcohols, and many amines. The simplest organic sulfonyl chloride, it is used to make methanesulfonates and to generate the elusive molecule sulfene.
Methanesulfonic anhydride (Ms2O) is the acid anhydride of methanesulfonic acid. Like methanesulfonyl chloride (MsCl), it may be used to generate mesylates (methanesulfonyl esters).
3-Hydroxytetrahydrofuran is a colorless liquid with a normal boiling point of 179 °C and boiling at 88−89 °C at 17 mmHg, with density. 3-OH THF is a useful pharmaceutical intermediate. The enantiopure version of this compound is an intermediate to launched retroviral drugs.
Sulfoxylic acid (H2SO2) (also known as hyposulfurous acid or sulfur dihydroxide) is an unstable oxoacid of sulfur in an intermediate oxidation state between hydrogen sulfide and dithionous acid. It consists of two hydroxy groups attached to a sulfur atom. Sulfoxylic acid contains sulfur in an oxidation state of +2. Sulfur monoxide (SO) can be considered as a theoretical anhydride for sulfoxylic acid, but it is not actually known to react with water.