Methionine-S-oxide reductase

Last updated
Methionine-S-oxide reductase
Identifiers
EC no. 1.8.4.5
CAS no. 70248-65-6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Methionine-S-oxide reductase (EC 1.8.4.5, methyl sulfoxide reductase I and II, acetylmethionine sulfoxide reductase, methionine sulfoxide reductase, L-methionine:oxidized-thioredoxin S-oxidoreductase) is an enzyme with systematic name L-methionine:thioredoxin-disulfide S-oxidoreductase. [1] [2] [3] This enzyme catalyses the following chemical reaction

L-methionine + thioredoxin disulfide + H2O L-methionine S-oxide + thioredoxin

In the reverse reaction, dithiothreitol can replace reduced thioredoxin.

Related Research Articles

<span class="mw-page-title-main">Ribonucleotide reductase</span> Class of enzymes

Ribonucleotide reductase (RNR), also known as ribonucleoside diphosphate reductase (rNDP), is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides. It catalyzes this formation by removing the 2'-hydroxyl group of the ribose ring of nucleoside diphosphates. This reduction produces deoxyribonucleotides. Deoxyribonucleotides in turn are used in the synthesis of DNA. The reaction catalyzed by RNR is strictly conserved in all living organisms. Furthermore, RNR plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. A somewhat unusual feature of the RNR enzyme is that it catalyzes a reaction that proceeds via a free radical mechanism of action. The substrates for RNR are ADP, GDP, CDP and UDP. dTDP is synthesized by another enzyme from dTMP.

Thioredoxin reductases are enzymes that reduce thioredoxin (Trx). Two classes of thioredoxin reductase have been identified: one class in bacteria and some eukaryotes and one in animals. In bacteria TrxR also catalyzes the reduction of glutaredoxin like proteins known as NrdH. Both classes are flavoproteins which function as homodimers. Each monomer contains a FAD prosthetic group, a NADPH binding domain, and an active site containing a redox-active disulfide bond.

<span class="mw-page-title-main">Methionine synthase</span> Mammalian protein found in Homo sapiens

Methionine synthase also known as MS, MeSe, MTR is responsible for the regeneration of methionine from homocysteine. In humans it is encoded by the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase). Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle, and is the enzyme responsible for linking the cycle to one-carbon metabolism via the folate cycle. There are two primary forms of this enzyme, the Vitamin B12 (cobalamin)-dependent (MetH) and independent (MetE) forms, although minimal core methionine synthases that do not fit cleanly into either category have also been described in some anaerobic bacteria. The two dominant forms of the enzymes appear to be evolutionary independent and rely on considerably different chemical mechanisms. Mammals and other higher eukaryotes express only the cobalamin-dependent form. In contrast, the distribution of the two forms in Archaeplastida (plants and algae) is more complex. Plants exclusively possess the cobalamin-independent form, while algae have either one of the two, depending on species. Many different microorganisms express both the cobalamin-dependent and cobalamin-independent forms.

<span class="mw-page-title-main">Glutaredoxin</span>

Glutaredoxins are small redox enzymes of approximately one hundred amino-acid residues that use glutathione as a cofactor. In humans this oxidation repair enzyme is also known to participate in many cellular functions, including redox signaling and regulation of glucose metabolism. Glutaredoxins are oxidized by substrates, and reduced non-enzymatically by glutathione. In contrast to thioredoxins, which are reduced by thioredoxin reductase, no oxidoreductase exists that specifically reduces glutaredoxins. Instead, glutaredoxins are reduced by the oxidation of glutathione. Reduced glutathione is then regenerated by glutathione reductase. Together these components compose the glutathione system.

Trimethylamine N-oxide reductase is a microbial enzyme that can reduce trimethylamine N-oxide (TMAO) into trimethylamine (TMA), as part of the electron transport chain. The enzyme has been purified from E. coli and the photosynthetic bacteria Roseobacter denitrificans.

Arsenate reductase (glutaredoxin) (EC 1.20.4.1) is an enzyme that catalyzes the chemical reaction

Adenylyl-sulfate reductase (glutathione) is an enzyme that catalyzes the chemical reaction

Adenylyl-sulfate reductase (thioredoxin) is an enzyme that catalyzes the chemical reaction

In enzymology, a L-methionine (R)-S-oxide reductase (EC 1.8.4.14) is an enzyme that catalyzes the chemical reaction

In enzymology, a L-methionine (S)-S-oxide reductase (EC 1.8.4.13) is an enzyme that catalyzes the chemical reaction

Nitric oxide reductase, an enzyme, catalyzes the reduction of nitric oxide (NO) to nitrous oxide (N2O). The enzyme participates in nitrogen metabolism and in the microbial defense against nitric oxide toxicity. The catalyzed reaction may be dependent on different participating small molecules: Cytochrome c (EC: 1.7.2.5, Nitric oxide reductase (cytochrome c)), NADPH (EC:1.7.1.14), or Menaquinone (EC:1.7.5.2).

In enzymology, a peptide-methionine (R)-S-oxide reductase (EC 1.8.4.12) is an enzyme that catalyzes the chemical reaction

In enzymology, a trimethylamine-N-oxide reductase (cytochrome c) (EC 1.7.2.3) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">MSRA (gene)</span> Protein-coding gene in the species Homo sapiens

Peptide methionine sulfoxide reductase (Msr) is a family of enzymes that in humans is encoded by the MSRA gene.

<span class="mw-page-title-main">Ferredoxin-thioredoxin reductase</span>

Ferredoxin-thioredoxin reductase EC 1.8.7.2, systematic name ferredoxin:thioredoxin disulfide oxidoreductase, is a [4Fe-4S] protein that plays an important role in the ferredoxin/thioredoxin regulatory chain. It catalyzes the following reaction:

<span class="mw-page-title-main">Methionine sulfoxide</span> Chemical compound

Methionine sulfoxide is the organic compound with the formula CH3S(O)CH2CH2CH(NH2)CO2H. It is an amino acid that occurs naturally although it is formed post-translationally.

Peptide-methionine (S)-S-oxide reductase (EC 1.8.4.11, MsrA, methionine sulphoxide reductase A, methionine S-oxide reductase (S-form oxidizing), methionine sulfoxide reductase A, peptide methionine sulfoxide reductase, formerly protein-methionine-S-oxide reductase) is an enzyme with systematic name peptide-L-methionine:thioredoxin-disulfide S-oxidoreductase (L-methionine (S)-S-oxide-forming). This enzyme catalyses the following chemical reaction

Oxidation response is stimulated by a disturbance in the balance between the production of reactive oxygen species and antioxidant responses, known as oxidative stress. Active species of oxygen naturally occur in aerobic cells and have both intracellular and extracellular sources. These species, if not controlled, damage all components of the cell, including proteins, lipids and DNA. Hence cells need to maintain a strong defense against the damage. The following table gives an idea of the antioxidant defense system in bacterial system.

The Disulfide bond oxidoreductase D (DsbD) family is a member of the Lysine Exporter (LysE) Superfamily. A representative list of proteins belonging to the DsbD family can be found in the Transporter Classification Base.

Dr. Herbert Weissbach NAS NAI AAM is an American biochemist/molecular biologist.

References

  1. Black, S.; Harte, E.M.; Hudson, B.; Wartofsky, L. (1960). "A specific enzymatic reduction of L-(-)methionine sulfoxide and a related nonspecific reduction of diulfides". J. Biol. Chem. 235: 2910–2916.
  2. Ejiri SI, Weissbach H, Brot N (July 1979). "Reduction of methionine sulfoxide to methionine by Escherichia coli". Journal of Bacteriology. 139 (1): 161–4. PMC   216841 . PMID   37234.
  3. Ejiri SI, Weissbach H, Brot N (March 1980). "The purification of methionine sulfoxide reductase from Escherichia coli". Analytical Biochemistry. 102 (2): 393–8. doi:10.1016/0003-2697(80)90173-6. PMID   6999943.