Mucoromyceta

Last updated

Mucoromyceta
Phycomyces4.jpg
Phycomyces
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Subkingdom: Mucoromyceta
Tedersoo et al. 2018
Divisions and subdivisions

Mucoromyceta is a subkingdom of fungi which includes the divisions Calcarisporiellomycota, Glomeromycota, Mortierellomycota and Mucoromycota. [1] This enormous group includes almost all molds.[ citation needed ]

Contents

Sources published prior to Tedersoo et al. 2018 refer to this taxon as a phylum Mucoromycota, with three subphyla. In a 2016 study using this older treatement of "Mucoromycota" equivalent to current Mucoromyceta, the group appears as sister to Dikarya. [2] [3]

Informally known as zygomycetes I, Mucoromyceta includes Mucoromycotina, Mortierellomycotina, and Glomeromycotina, and consists of mainly mycorrhizal fungi, root endophytes, and plant decomposers. [2] Mucoromycotina and Glomeromycotina can form mycorrhiza-like relationships with nonvascular plants. [4] Mucoromyceta contain multiple mycorrhizal lineages, [5] root endophytes, [6] and decomposers of plant-based carbon sources. [7] Mucoromycotina species known as mycoparasites, or putative parasites of arthropods are like saprobes.[ clarification needed ] [8] When Mucoromyceta infect animals, they are seen as opportunistic pathogens. [2] Mucoromycotina are fast-growing fungi and early colonizers of carbon-rich substrates. [9] Mortierellomycotina are common soil fungi that occur as root endophytes of woody plants and are isolated as saprobes. [10] Glomeromycotina live in soil, forming a network of hyphae, but depend on organic carbon from host plants. In exchange, the arbuscular mycorrhizal fungi provide nutrients to the plant. [11]

Description

Molds in this group have a stalk which at the top has a caplike structure that includes the spores. [1]

Reproduction

Known reproduction states of Mucoromyceta are zygospore production and asexual reproduction. Zygospores can have decorations on their surface and range up to several millimeters in diameter. [12] Asexual reproduction typically involves the production of sporangiospores or chlamydospores. [2] Multicellular sporcaps are present within Mucoromycotina, [13] Mortierellomycotina [14] and as aggregations of spore-producing in species of Glomeromycotina. [5] Shown in Mucorales, sexual reproduction is under the control of mating type genes, sexP and sexM, which regulate the production of pheromones required for the maturation of hyphae into gametangia. [15] [12] The sexP gene is expressed during vegetative growth and matting, while the sexM gene is expressed during mating. [16] Sexual reproduction in Glomeromycotina is unknown, although its occurrence is inferred from genomic studies. However, specialized hyphae produce chlamydospore-like spores asexually; these may be borne at terminal (apical) or lateral positions on the hyphae, or intercalary (formed within the hypha, between sub-apical cells). [7] Species of Glomeromycotina produce coenocytic hyphae that can have bacterial endosymbionts. [17] Mortierellomycotina reproduce asexually by sporangia that either lack or have a reduced columella, which support the sporangium. [2] Species of Mortierellomycotina only form microscopic colonies, but some make multicellular sporocarps. [14] Mucoromycotina sexual reproduction is by prototypical zygospore formation and asexual reproduction and involves the large production of sporangia. [2]

Morphology

Mucoromycotina contain discoidal hemispherical spindle pole bodies. Although spindle pole bodies function as microtubule organizing centers, they lack remnants of the centrioles' characteristic 9+2 microtubule arrangement. Species of Mucoromycotina and Mortierellomycotina produce large-diameter, coenocytic hyphae. Glomeromycotina also form coenocytic hyphae with highly branched, narrow hyphal arbuscules in host cells. When septations occur in Mucoromyceta they are formed at the base of reproductive structures. [2]

Production of lipids, polyphosphates, and carotenoids

Mucoromyceta's metabolism can utilize many substrates that are from various nitrogen and phosphorus resources to produce lipids, chitin, polyphosphates, and carotenoids. They have been found to co-produce metabolites in a single fermentation process like polyphosphates and lipids. [18] The overproduction of chitin from Mucoromyceta fungi can be accomplished by limiting inorganic phosphorus and promoting acidic conditions. [19] Mucoromyceta are capable of accumulating high amounts of lipids in their cell biomass, which allows the fungi to produce polyunsaturated fatty acids and carotenoids. They have been found to induce antimicrobial activity from fungal crude total lipids. [20] [21] The high production of lipids from Mucoromyceta have the potential for use in biodiesel production. [22] [23]

See also

References

  1. 1 2 Tedersoo, L.; Sánchez-Ramírez, S.; Kõljalg, U.; Bahram, M.; et al. (2018). "High-level classification of the Fungi and a tool for evolutionary ecological analyses". Fungal Diversity. 90: 135–159. doi: 10.1007/s13225-018-0401-0 .
  2. 1 2 3 4 5 6 7 Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, et al. (September 2016). "A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data". Mycologia. 108 (5): 1028–1046. doi:10.3852/16-042. PMC   6078412 . PMID   27738200.
  3. Moore D, Robson GD, Trinci AP (2020). "2.8. The fungal phylogeny". 21st Century Guidebook to Fungi (2nd ed.). Cambridge University Press. pp. 29–30. ISBN   978-1-108-74568-0.
  4. Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, et al. (January 2015). "First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2". The New Phytologist. 205 (2): 743–756. Bibcode:2015NewPh.205..743F. doi:10.1111/nph.13024. PMC   4303992 . PMID   25230098.
  5. 1 2 Redecker D, Schüßler A (2014). "Glomeromycota". In McLaughlin DJ, Spatafora JW (eds.). Systematics and evolution. Part A. (second ed.). Berlin: Springer. pp. 251–270. ISBN   978-3-642-55318-9.
  6. Terhonen E, Keriö S, Sun H, Asiegbu FO (June 2014). "Endophytic fungi of Norway spruce roots in boreal pristine mire, drained peatland and mineral soil and their inhibitory effect on Heterobasidion parviporum in vitro". Fungal Ecology. 9: 17–26. Bibcode:2014FunE....9...17T. doi:10.1016/j.funeco.2014.01.003.
  7. 1 2 Benny GL, Humber RA, Voigt K (2014). "8 Zygomycetous Fungi: Phylum Entomophthoromycota and Subphyla Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina". In McLaughlin DJ, Spatafora JW (eds.). Systematics and evolution. Part A. (second ed.). Berlin: Springer. pp. 251–270. ISBN   978-3-642-55318-9.
  8. Hoffmann K, Pawłowska J, Walther G, Wrzosek M, de Hoog GS, Benny GL, et al. (June 2013). "The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies". Persoonia. 30 (1): 57–76. doi:10.3767/003158513X666259. PMC   3734967 . PMID   24027347.
  9. Jennessen J, Schnürer J, Olsson J, Samson RA, Dijksterhuis J (May 2008). "Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group". Mycological Research. 112 (Pt 5): 547–563. doi:10.1016/j.mycres.2007.11.006. PMID   18400482.
  10. Summerbell RC (2005). "Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions". Studies in Mycology. 53: 121–145. doi: 10.3114/sim.53.1.121 .
  11. Lanfranco L, Fiorilli V, Gutjahr C (December 2018). "Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis". The New Phytologist. 220 (4): 1031–1046. Bibcode:2018NewPh.220.1031L. doi: 10.1111/nph.15230 . hdl: 2318/1667502 . PMID   29806959. S2CID   44106242.
  12. 1 2 Lee SC, Idnurm A (March 2017). Heitman J, Gow NA (eds.). "Fungal Sex: The Mucoromycota". Microbiology Spectrum. 5 (2): 5.2.14. doi:10.1128/microbiolspec.FUNK-0041-2017. PMC   11687471 . PMID   28332467.
  13. Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (August 2011). "The dawn of symbiosis between plants and fungi". Biology Letters. 7 (4): 574–577. doi:10.1098/rsbl.2010.1203. PMC   3130224 . PMID   21389014.
  14. 1 2 Smith ME, Gryganskyi A, Bonito G, Nouhra E, Moreno-Arroyo B, Benny G (December 2013). "Phylogenetic analysis of the genus Modicella reveals an independent evolutionary origin of sporocarp-forming fungi in the Mortierellales". Fungal Genetics and Biology. 61: 61–68. doi:10.1016/j.fgb.2013.10.001. hdl: 11336/10321 . PMID   24120560.
  15. Idnurm A, Walton FJ, Floyd A, Heitman J (January 2008). "Identification of the sex genes in an early diverged fungus". Nature. 451 (7175): 193–196. Bibcode:2008Natur.451..193I. doi:10.1038/nature06453. PMID   18185588. S2CID   4411640.
  16. Wetzel J, Burmester A, Kolbe M, Wöstemeyer J (April 2012). "The mating-related loci sexM and sexP of the zygomycetous fungus Mucor mucedo and their transcriptional regulation by trisporoid pheromones". Microbiology. 158 (Pt 4): 1016–1023. doi: 10.1099/mic.0.054106-0 . PMID   22262094.
  17. Torres-Cortés G, Ghignone S, Bonfante P, Schüßler A (June 2015). "Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association". Proceedings of the National Academy of Sciences of the United States of America. 112 (25): 7785–7790. Bibcode:2015PNAS..112.7785T. doi: 10.1073/pnas.1501540112 . PMC   4485150 . PMID   25964335.
  18. Dzurendova S, Losada CB, Dupuy-Galet BX, Fjær K, Shapaval V (January 2022). "Mucoromycota fungi as powerful cell factories for modern biorefinery". Applied Microbiology and Biotechnology. 106 (1): 101–115. doi:10.1007/s00253-021-11720-1. hdl: 11250/2834712 . PMID   34889982. S2CID   245013763.
  19. Dzurendova S, Zimmermann B, Kohler A, Tafintseva V, Slany O, Certik M, Shapaval V (22 June 2020). Virolle MJ (ed.). "Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi". PLOS ONE. 15 (6): e0234870. Bibcode:2020PLoSO..1534870D. doi: 10.1371/journal.pone.0234870 . PMC   7307774 . PMID   32569317.
  20. Mohamed H, El-Shanawany AR, Shah AM, Nazir Y, Naz T, Ullah S, et al. (5 November 2020). lia Domingues L (ed.). "Comparative Analysis of Different Isolated Oleaginous Mucoromycota Fungi for Their γ-Linolenic Acid and Carotenoid Production". BioMed Research International. 2020: 3621543. doi: 10.1155/2020/3621543 . PMC   7665918 . PMID   33204691.
  21. Volford B, Varga M, Szekeres A, Kotogán A, Nagy G, Vágvölgyi C, et al. (March 2021). "β-Galactosidase-Producing Isolates in Mucoromycota: Screening, Enzyme Production, and Applications for Functional Oligosaccharide Synthesis". Journal of Fungi. 7 (3): 229. doi: 10.3390/jof7030229 . PMC   8003776 . PMID   33808917.
  22. Kosa G, Zimmermann B, Kohler A, Ekeberg D, Afseth NK, Mounier J, Shapaval V (December 2018). "High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids". Biotechnology for Biofuels. 11 (1): 66. Bibcode:2018BB.....11...66K. doi: 10.1186/s13068-018-1070-7 . PMC   5851148 . PMID   29563969.
  23. Zhao H, Lv M, Liu Z, Zhang M, Wang Y, Ju X, et al. (December 2021). "High-yield oleaginous fungi and high-value microbial lipid resources from Mucoromycota". BioEnergy Research. 14 (4): 1196–1206. Bibcode:2021BioER..14.1196Z. doi:10.1007/s12155-020-10219-3. ISSN   1939-1234. S2CID   228925586.

Further reading