Nanocell

Last updated

The term nanocell refers to a drug delivery platform consisting of a polymer-bound chemotherapeutic drug combined with a lipid-bound anti-angiogenesis drug. Nanocells are currently being developed in the lab of Shiladitya Sengupta of MIT.

Contents

Theory

Angiogenesis, or the formation of new blood vessels, plays a major role in the development of a tumor. After a tumor has grown to about the size of a cubic millimeter, its core becomes hypoxic, and it begins to release growth factors to recruit new blood vessels that will supply it with oxygen. Inhibiting angiogenesis has been investigated as a means of preventing tumor growth but has not proven to be fully successful, for tumor cells cut off from the blood supply can eventually develop “reactive resistance” to hypoxia. These resistant cancer cells could be killed by chemotherapeutic drugs, but once the vasculature to the tumor has been cut off, there is no way for chemotherapy to be delivered. Nanotechnology offers a way to deliver chemotherapeutic drugs and anti-angiogenic drugs in the same vehicle so that as the blood supply is shut off, chemotherapy is present to prevent any hypoxia-resistant cells from proliferating.

Technology

Labs at MIT are in the process of developing nanocells capable of delivering both types of drugs. Each nanocell is between 120 and 200 _m in diameter and can be thought of as “a balloon within a balloon.” Inside each nanocell is a chemotherapeutic drug covalently bound to a polymer, and on the surface of each cell is a lipid coat containing an anti-angiogenic drug. The technology makes use of the fact that a tumor's blood vessels have pores 600 _m in diameter and are much leakier than normal blood vessels, which have pores only around 50 _m in diameter. The nanocells circulate in the blood, and because of their size, they leak out of blood vessels only in tumors. Once there, the nanocells are degraded by enzymes produced by the tumor. Work remains to be done to win clinical approval for the technology, but results from Sengupta's lab indicate that the nanocells are more effective and less toxic than traditional chemotherapy.

Related Research Articles

Chemotherapy Treatment of cancer with one or more cytotoxic anti-neoplastic drugs

Chemotherapy is a type of cancer treatment that uses one or more anti-cancer drugs as part of a standardized chemotherapy regimen. Chemotherapy may be given with a curative intent, or it may aim to prolong life or to reduce symptoms. Chemotherapy is one of the major categories of the medical discipline specifically devoted to pharmacotherapy for cancer, which is called medical oncology.

Angiogenesis blood vessel formation when new vessels emerge from existing vessels

Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature by processes of sprouting and splitting. Vasculogenesis is the embryonic formation of endothelial cells from mesoderm cell precursors, and from neovascularization, although discussions are not always precise. The first vessels in the developing embryo form through vasculogenesis, after which angiogenesis is responsible for most, if not all, blood vessel growth during development and in disease.

Tumor hypoxia is the situation where tumor cells have been deprived of oxygen. As a tumor grows, it rapidly outgrows its blood supply, leaving portions of the tumor with regions where the oxygen concentration is significantly lower than in healthy tissues. Hypoxic microenvironements in solid tumors are a result of available oxygen being consumed within 70 to 150 μm of tumour vasculature by rapidly proliferating tumor cells thus limiting the amount of oxygen available to diffuse further into the tumor tissue. In order to support continuous growth and proliferation in challenging hypoxic environments, cancer cells are found to alter their metabolism. Furthermore, hypoxia is known to change cell behavior and is associated with extracellular matrix remodeling and increased migratory and metastatic behavior.

Transcatheter arterial chemoembolization is a minimally invasive procedure performed in interventional radiology to restrict a tumor's blood supply. Small embolic particles coated with chemotherapeutic drugs are injected selectively through a catheter into an artery directly supplying the tumor. These particles both block the blood supply and induce cytotoxicity, attacking the tumor in several ways.

An angiogenesis inhibitor is a substance that inhibits the growth of new blood vessels (angiogenesis). Some angiogenesis inhibitors are endogenous and a normal part of the body's control and others are obtained exogenously through pharmaceutical drugs or diet.

Moses Judah Folkman was an American medical scientist best known for his research on tumor angiogenesis, the process by which a tumor attracts blood vessels to nourish itself and sustain its existence. He founded the field of angiogenesis research, which has led to the discovery of a number of therapies based on inhibiting or stimulating neovascularization.

Robert S. Langer American scientist

Robert Samuel Langer, Jr. FREng is an American chemical engineer, scientist, entrepreneur, inventor and one of the twelve Institute Professors at the Massachusetts Institute of Technology.

Endostatin chemical compound

Endostatin is a naturally occurring, 20-kDa C-terminal fragment derived from type XVIII collagen. It is reported to serve as an anti-angiogenic agent, similar to angiostatin and thrombospondin.

The enhanced permeability and retention (EPR) effect is a controversial concept by which molecules of certain sizes tend to accumulate in tumor tissue much more than they do in normal tissues. The general explanation that is given for this phenomenon is that, in order for tumor cells to grow quickly, they must stimulate the production of blood vessels. VEGF and other growth factors are involved in cancer angiogenesis. Tumor cell aggregates as small as 150–200 μm, start to become dependent on blood supply carried out by neovasculature for their nutritional and oxygen supply. These newly formed tumor vessels are usually abnormal in form and architecture. They are poorly aligned defective endothelial cells with wide fenestrations, lacking a smooth muscle layer, or innervation with a wider lumen, and impaired functional receptors for angiotensin II. Furthermore, tumor tissues usually lack effective lymphatic drainage. All of these factors lead to abnormal molecular and fluid transport dynamics, especially for macromolecular drugs. This phenomenon is referred to as the "enhanced permeability and retention (EPR) effect" of macromolecules and lipids in solid tumors. The EPR effect is further enhanced by many pathophysiological factors involved in enhancement of the extravasation of macromolecules in solid tumor tissues. For instance, bradykinin, nitric oxide / peroxynitrite, prostaglandins, vascular permeability factor, tumor necrosis factor and others. One factor that leads to the increased retention is the lack of lymphatics around the tumor region which would filter out such particles under normal conditions.

Sphingosine-1-phosphate (S1P) is a signaling sphingolipid, also known as lysosphingolipid. It is also referred to as a bioactive lipid mediator. Sphingolipids at large form a class of lipids characterized by a particular aliphatic aminoalcohol, which is sphingosine.

Angioprevention is the concept of preventing disease development or progression through the inhibition of angiogenesis, the process of forming blood vessels. The concept of angioprevention has been developed by Adriana Albini and co-workers who showed that several drugs and natural compounds for cancer chemo-prevention actually prevent tumor blood vessel formation. This concept has been furthered through the identification of many other "angiopreventive" compounds. Neo-angiogenesis is crucial during tumor growth and progression since it provides oxygen and nutrients to the cancer cells and blood vessels constitute the major route of tumor cell dissemination leading to the formation of metastases. Inhibition of angiogenesis is expected to have major effects if started early during tumor development before metastatic cells have spread throughout the body. Dietary "angiopreventive" agents such as flavonoids or other polyphenols might therefore play an important role in cancer chemoprevention and retard or inhibit the growth and progression of cancers.

GenSpera

Inspyr Therapeutics, Inc. is a development-stage pharmaceutical company based in San Antonio, Texas. The company is focused on therapeutics that deliver a cancer-destroying drug directly to the tumor or its supporting environment, the tumor vasculature.

Tumor-associated macrophages (TAMs) are a class of immune cells present in high numbers in the microenvironment of solid tumors. They are heavily involved in cancer-related inflammation. Macrophages are known to originate from bone marrow-derived blood monocytes or yolk sac progenitors, but the exact origin of TAMs in human tumors remains to be elucidated. The composition of monocyte-derived macrophages and tissue-resident macrophages in the tumor microenvironment depends on the tumor type, stage, size, and location, thus it has been proposed that TAM identity and heterogeneity is the outcome of interactions between tumor-derived, tissue-specific, and developmental signals.

Tasquinimod chemical compound

Tasquinimod is an experimental drug currently being investigated for the treatment of solid tumors. Tasquinimod has been mostly studied in prostate cancer, but its mechanism of action suggests that it could be used to treat other cancers. Castration-resistant prostate cancer (CRPC), formerly called hormone-resistant or hormone-refractory prostate cancer, is prostate cancer that grows despite medical or surgical androgen deprivation therapy. Tasquinimod targets the tumor microenvironment and counteracts cancer development by inhibiting angiogenesis and metastasis and by modulating the immune system. It is now in phase III development, following successful phase II trial outcomes.

A nanocarrier is nanomaterial being used as a transport module for another substance, such as a drug. Commonly used nanocarriers include micelles, polymers, carbon-based materials, liposomes and other substances. Nanocarriers are currently being studied for their use in drug delivery and their unique characteristics demonstrate potential use in chemotherapy.

Directed enzyme prodrug therapy (DEPT) uses enzymes artificially introduced into the body to convert prodrugs, which have no or poor biologically activity, to the active form in the desired location within the body. Many chemotherapy drugs for cancer lack tumour specificity and the doses required to reach therapeutic levels in the tumour are often toxic to other tissues. DEPT strategies are an experimental method of reducing the systemic toxicity of a drug, by achieving high levels of the active drug only at the desired site. This article describes the variations of DEPT technology.

Gold nanoparticles in chemotherapy

This article is about gold nanoparticles in chemotherapy and radiotherapy. For colloidal gold, see colloidal gold.

Tumor-associated endothelial cell

Tumor-associated endothelial cells or tumor endothelial cells (TECs) refers to cells lining the tumor-associated blood vessels that control the passage of nutrients into surrounding tumor tissue. Across different cancer types, tumor-associated blood vessels have been discovered to differ significantly from normal blood vessels in morphology, gene expression, and functionality in ways that promote cancer progression. There has been notable interest in developing cancer therapeutics that capitalize on these abnormalities of the tumor-associated endothelium to destroy tumors.

Vasohibin-2 (VASH2) is a multifaceted protein that is encoded for by the VASH2 gene. As a vasohibin protein, VASH2 is closely associated with the vascular endothelial growth factor (VEGF) family of proteins as well. VASH2 has therefore been implicated in playing a vital role in blood vessel generation (angiogenesis), especially as it relates to tumor growth, but it has also been observed in association with neuron differentiation as well as ameliorating the symptoms of diabetic nephopathology.

The host response to cancer therapy is defined as a physiological response of the non-malignant cells of the body to a specific cancer therapy. The response is therapy-specific, occurring independently of cancer type or stage.

References