Oligobrachia

Last updated

Oligobrachia
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Annelida
Clade: Pleistoannelida
Clade: Sedentaria
Order: Sabellida
Family: Siboglinidae
Genus: Oligobrachia
Ivanov, 1957

Oligobrachia is a genus in the family Siboglinidae, [1] commonly known as beard worms. These beard worms are typically found at spreading centers, hydrothermal vents, and undersea volcanoes. [2] The siboglinidae are annelids which can be found buried in sediments. Beard worms do not necessarily exist at one specific part of the world's oceans, however, they are spread out all over the ocean floors as long as the surrounding environment is similar; these are known as metapopulations. [3] Most commonly, these organisms are found at the bottom of the ocean floor, whether it be at a depth of roughly 25 meters or hundreds of meters. [4] Oligobrachia can typically be found near hydrothermal vents and methane seeps. An important characteristic of this genus is that it lacks a mouth and gut. Therefore, it relies on symbiotic bacteria to provide the host organism with energy to survive. The majority of oligobrachia that have been observed have been found in the Arctic and other high-latitude areas of the world's oceans. [5]

Contents

Endosymbiotic bacteria

Oligobrachia or any genus within the siboglinidae family, lack a mouth or gut. Therefore, this family has evolved to develop a symbiotic relationship with bacteria. [6] These symbionts provide up to half of the DNA for their tubeworm hosts. Additionally, these symbionts are shared amongst all species within a generation, known as horizontal transmission, as tubeworms reproduce. This is different from vertical transmission, which is the transmission of DNA from parents to offspring. [7] This can serve as a costly evolutionary trait due to the fact that environments can change over time. [8]

Even hydrothermal vents, which are hypothesized to be some of the most stable environments on Earth, can go through changes that would alter the proportion of chemicals in the area. The oligobrachia genus has developed the evolutionary capability of having specialized cells that provide a habitat for the endosymbiotic bacteria that the tube worm relies on to survive. Depending on the habitat the oligobrachia lives near, whether it is a hydrothermal vent or an undersea volcano, the endosymbiotic bacteria will oxidize methane, sulfide, or what ever the dominant chemicals in the water are.

Studies have found that oligobrachia are able to select for the type of endosymbiotic bacteria they will need in order to be best adapted to live in their environment. These bacteria can be either thioautotrophic (feeds on sulfide) or methanotrophic (feeds on methane). [4] Oligobrachia that live near these undersea volcanoes will most likely select for thioautotrophic endosymbiotic bacteria, while oligobrachia that live near hydrothermal vents will most likely select for methanotrophic bacteria.

Hemoglobin production

There has been some studies that have explored the hemoglobin production of beard worms. It has since been found that the site of hemoglobin production is located in the peritoneal membrane in the posterior body. The minimal studies that explore this process within the tubeworm found that the site of hemoglobin production is the peritoneal membrane. [9]

Internal anatomy

Out of the known deep sea organisms, tubeworms are some of the most widely studied. When it comes to the nervous system, the majority of studies that exist mostly pertain to the central nervous system, as opposed to the peripheral nervous system. Studies found that the sensory systems of tubeworms consist essentially of three main features: epidermal solitary sensory cells, sensory spots, and what are assumed to be sensory organs. The lack of diversity among the nervous systems of tubeworms that were studied were found to be a possible explanation for the origin of the genus, oligobrachia. [10]

Development

Siboglinidae is one of the most studied genus out of the deep sea marine organisms that are currently discovered. During the development of the tube worm, it has been found that they developed the trophophore, which is the part of the body that hosts its endosymbiotic bacteria. It has been hypothesized that this part of the body is developed by the bacteria that rely on this feature of the tubeworm's internal anatomy in order to be able to carry out processes that siboglinidae cannot conduct on its own. As previously mentioned, siboglinidae lack a mouth or gut; endosymbiotic bacteria helps carry out these processes for the tubeworms in exchange for a place to live. [11] Studies that exist regarding the development of oligobrachia have found this species incubating embryos. [12]

Related Research Articles

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualistic relationship. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals, and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Symbiosis</span> Close, long-term biological interaction between distinct organisms (usually species)

Symbiosis is any type of a close and long-term biological interaction, between two organisms of different species. The two organisms, termed symbionts, can be either in a mutualistic, a commensalistic, or a parasitic relationship. In 1879, Heinrich Anton de Bary defined symbiosis as "the living together of unlike organisms".

<span class="mw-page-title-main">Siboglinidae</span> Family of annelid worms

Siboglinidae is a family of polychaete annelid worms whose members made up the former phyla Pogonophora and Vestimentifera. The family is composed of around 100 species of vermiform creatures which live in thin tubes buried in sediment (Pogonophora) or in tubes attached to hard substratum (Vestimentifera) at ocean depths ranging from 100 to 10,000 m. They can also be found in association with hydrothermal vents, methane seeps, sunken plant material, and whale carcasses.

<span class="mw-page-title-main">Marine worm</span>

Any worm that lives in a marine environment is considered a water worm. Marine worms are found in several different phyla, including the Platyhelminthes, Nematoda, Annelida, Chaetognatha, Hemichordata, and Phoronida. For a list of marine animals that have been called "sea worms", see sea worm.

<span class="mw-page-title-main">Hydrothermal vent</span> Fissure in a planets surface from which heated water emits

Hydrothermal vents are fissures on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. The dispersal of hydrothermal fluids throughout the global ocean at active vent sites creates hydrothermal plumes. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

<span class="mw-page-title-main">Cold seep</span> Ocean floor area where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs

A cold seep is an area of the ocean floor where seepage of fluids rich in hydrogen sulfide, methane, and other hydrocarbons occurs, often in the form of a brine pool. Cold does not mean that the temperature of the seepage is lower than that of the surrounding sea water; on the contrary, its temperature is often slightly higher. The "cold" is relative to the very warm conditions of a hydrothermal vent. Cold seeps constitute a biome supporting several endemic species.

<i>Riftia</i> Giant tube worm (species of annelid)

Riftia pachyptila, commonly known as the giant tube worm and less commonly known as the giant beardworm, is a marine invertebrate in the phylum Annelida related to tube worms commonly found in the intertidal and pelagic zones. R. pachyptila lives on the floor of the Pacific Ocean near hydrothermal vents. The vents provide a natural ambient temperature in their environment ranging from 2 to 30 °C, and this organism can tolerate extremely high hydrogen sulfide levels. These worms can reach a length of 3 m, and their tubular bodies have a diameter of 4 cm (1.6 in).

<i>Osedax</i> Genus of annelid worms

Osedax is a genus of deep-sea siboglinid polychaetes, commonly called boneworms, zombie worms, or bone-eating worms. Osedax is Latin for "bone-eater". The name alludes to how the worms bore into the bones of whale carcasses to reach enclosed lipids, on which they rely for sustenance. They utilize specialized root tissues for bone-boring. It is possible that multiple species of Osedax reside in the same bone. Osedax worms are also known to feed on the collagen itself by making holes in the whale's skeletal structure. These holes can also serve as a form of protection from nearby predators.

Symbiotic bacteria are bacteria living in symbiosis with another organism or each other. For example, rhizobia living in root nodules of legumes provide nitrogen fixing activity for these plants.

Horizontal transmission is the transmission of organisms between biotic and/or abiotic members of an ecosystem that are not in a parent-progeny relationship. Because the evolutionary fate of the agent is not tied to reproductive success of the host, horizontal transmission tends to evolve virulence. It is therefore a critical concept for evolutionary medicine.

<i>Lamellibrachia</i> Genus of annelids

Lamellibrachia is a genus of tube worms related to the giant tube worm, Riftia pachyptila. They live at deep-sea cold seeps where hydrocarbons leak out of the seafloor, and are entirely reliant on internal, sulfide-oxidizing bacterial symbionts for their nutrition. The symbionts, gammaproteobacteria, require sulfide and inorganic carbon. The tube worms extract dissolved oxygen and hydrogen sulfide from the sea water with the crown of plumes. Species living near seeps can also obtain sulfide through their "roots", posterior extensions of their body and tube. Several sorts of hemoglobin are present in the blood and coelomic fluid to bind to the different components and transport them to the symbionts.

A tubeworm is any worm-like sessile invertebrate that anchors its tail to an underwater surface and secretes around its body a mineral tube, into which it can withdraw its entire body.

<i>Lamellibrachia luymesi</i> Species of tube worms in the family Siboglinidae

Lamellibrachia luymesi is a species of tube worms in the family Siboglinidae. It lives at deep-sea cold seeps where hydrocarbons are leaking out of the seafloor. It is entirely reliant on internal, sulfide-oxidizing bacterial symbionts for its nutrition. These are located in a centrally located "trophosome".

<span class="mw-page-title-main">Trophosome</span> Organ containing endosymbionts

A trophosome is a highly vascularised organ found in some animals that houses symbiotic bacteria that provide food for their host. Trophosomes are contained by the coelom of tube worms and in the body of symbiotic flatworms of the genus Paracatenula.

<i>Gigantopelta chessoia</i> Species of gastropod

Gigantopelta chessoia is a species of deep sea snail from hydrothermal vents, a marine gastropod mollusk in the family Peltospiridae.

<span class="mw-page-title-main">Marine microbial symbiosis</span>

Microbial symbiosis in marine animals was not discovered until 1981. In the time following, symbiotic relationships between marine invertebrates and chemoautotrophic bacteria have been found in a variety of ecosystems, ranging from shallow coastal waters to deep-sea hydrothermal vents. Symbiosis is a way for marine organisms to find creative ways to survive in a very dynamic environment. They are different in relation to how dependent the organisms are on each other or how they are associated. It is also considered a selective force behind evolution in some scientific aspects. The symbiotic relationships of organisms has the ability to change behavior, morphology and metabolic pathways. With increased recognition and research, new terminology also arises, such as holobiont, which the relationship between a host and its symbionts as one grouping. Many scientists will look at the hologenome, which is the combined genetic information of the host and its symbionts. These terms are more commonly used to describe microbial symbionts.

<i>Tevnia</i> Genus of annelid worms

Tevnia is a genus of giant tube worm in the family Siboglinidae, with only one species, Tevnia jerichonana, living in a unique deep-sea environment. These deep sea marine species survive in environments like hydrothermal vents. These vents give off gas and toxic chemicals with the addition of having superheated temperatures. The giant tube worm prefers environments such as these despite the harsh temperature and toxic sea water.

Hydrogen sulfide chemosynthesis is a form of chemosynthesis which uses hydrogen sulfide. It is common in hydrothermal vent microbial communities Due to the lack of light in these environments this is predominant over photosynthesis

<i>Lamellibrachia satsuma</i> Species of tube worms in the family Siboglinidae

Lamellibrachia satsuma is a vestimentiferan tube worm that was discovered near a hydrothermal vent in Kagoshima Bay, Kagoshima at the depth of only 82 m (269 ft) the shallowest depth record for a vestimentiferan. Its symbiotic sulfur oxidizer bacteria have been characterised as ε-Proteobacteria and γ-Proteobacteria. Subspecies have been later found associated with cold seeps at Hatsushima in Sagami Bay and at the Daini Tenryu Knoll in the Nankai Trough with specimens obtained at up to 1,170 m (3,840 ft) depth.

Frenulata, "beard worms", is a clade of Siboglinidae, "tube worms". They are one of four lineages with numerous species. They may be the most basal clade in the family. Despite being the first tube worms to be encountered and described, they remain the least studied group. This is because of their slender shape, they often get destroyed as a result of being caught as bycatch or poor preservation. They are found primarily in deep, muddy sediments, cold seeps, and anoxic firth sediments.

References

  1. "Oligobrachia (Oligobrachia) | U.S. Fish & Wildlife Service". FWS.gov. Retrieved 2023-04-13.
  2. "Beard worm | Classification & Facts | Britannica". www.britannica.com. Retrieved 2023-04-17.
  3. "Metapopulation Ecology". nature.berkeley.edu. Retrieved 2023-04-17.
  4. 1 2 Aida, M; Kanemori, M; Kubota, N; Matada, M; Sasayama, Y; Fukumori, Y (2008). "Distribution and population of free-living cells related to endosymbiont a harbored in Oligobrachia mashikoi (a Siboglinid Polychaete) inhabiting Tsukumo Bay". Microbes and Environments. 23 (1): 81–88. doi: 10.1264/jsme2.23.81 . hdl: 2297/12417 . PMID   21558692.
  5. Lee, Yung Mi; Noh, Hyun-Ju; Lee, Dong-Hun; Kim, Jung-Hyun; Jin, Young Keun; Paull, Charles (2019). "Bacterial endosymbiont of Oligobrachia sp. (Frenulata) from an active mud volcano in the Canadian Beaufort Sea". Polar Biology. 42 (12): 2305–2312. doi:10.1007/s00300-019-02599-w. S2CID   207987760.
  6. Kubota, Norihiro; Kanemori, Masaaki; Sasayama, Yuichi; Aida, Masato; Fukumori, Yoshihiro (2007). "Identification of endosymbionts in Oligobrachia mashikoi (Siboglinidae, Annelida)". Microbes and Environments. 22 (2): 136–144. doi:10.1264/jsme2.22.136. hdl: 2297/12422 . S2CID   84629870.
  7. Bruijning, Marjolein; Henry, Lucas P.; Forsberg, Simon K. G.; Metcalf, C. Jessica E.; Ayroles, Julien F. (23 December 2021). "Natural selection for imprecise vertical transmission in host–microbiota systems". Nature Ecology & Evolution. 6 (1): 77–87. doi:10.1038/s41559-021-01593-y. PMC   9901532 . PMID   34949814.
  8. Breusing, C.; Genetti, M.; Russell, S. L.; Corbett-Detig, R. B.; Beinart, R. A. (2022). "Horizontal transmission enables flexible associations with locally adapted symbiont strains in deep-sea hydrothermal vent symbioses". Proceedings of the National Academy of Sciences. 119 (14): e2115608119. Bibcode:2022PNAS..11915608B. doi:10.1073/pnas.2115608119. PMC   9168483 . PMID   35349333.
  9. Nakahama, Shigeyuki; Nakagawa, Taro; Kanemori, Masaaki; Fukumori, Yoshihiro; Sasayama, Yuichi (December 2008). "Direct Evidence That Extracellular Giant Hemoglobin is Produced in Chloragogen Tissues in a Beard Worm, Oligobrachia mashikoi (Frenulata, Siboglinidae, Annelida)". Zoological Science. pp. 1247–1252.
  10. Zaitseva, Olga; Smirnov, Roman; Starunova, Zinaida; Vedenin, Andrey; Starunov, Viktor (March 29, 2022). "Sensory cells and the organization of the peripheral nervous system of the siboglinid Oligobrachia haakonmosbiensis Smirnov, 2000". BMC Zoology. 7 (1): 16. doi: 10.1186/s40850-022-00114-z . PMC   10127031 . PMID   37170298. S2CID   256471616.
  11. Rouse, Greg W.; Wilson, Nerida G.; Goffredi, Shana K.; Johnson, Shannon B.; Smart, Tracey; Widmer, Chad; Young, Craig M.; Vrijenhoek, Robert C. (2009-02-01). "Spawning and development in Osedax boneworms (Siboglinidae, Annelida)". Marine Biology. 156 (3): 395–405. doi:10.1007/s00227-008-1091-z. ISSN   1432-1793. S2CID   84177994.
  12. Southward, Eve C. (11 May 2009). "Description of a New Species of Oligobrachia (Pogonophora) from the North Atlantic, With a Survey of the Oligobrachiidae". Journal of the Marine Biological Association of the United Kingdom. 58 (2): 357–365. doi:10.1017/S0025315400028034. S2CID   86005173.