PEPD

Last updated
PEPD
Protein PEPD PDB 2iw2.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PEPD , PROLIDASE, peptidase D
External IDs OMIM: 613230; MGI: 97542; HomoloGene: 239; GeneCards: PEPD; OMA:PEPD - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001166057
NM_000285
NM_001166056

NM_008820

RefSeq (protein)

NP_000276
NP_001159528
NP_001159529

NP_032846

Location (UCSC) Chr 19: 33.39 – 33.52 Mb Chr 7: 34.61 – 34.74 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Xaa-Pro dipeptidase, also known as prolidase, is an enzyme that in humans is encoded by the PEPD gene. [5] [6] [7] Prolidase is an enzyme in humans that plays a crucial role in protein metabolism and collagen recycling through the catalysis of the rate-limiting step in these chemical reactions. [8] This enzyme is coded by the gene PEPD (peptidase D), located on chromosome 19. [9] Serum prolidase activity is also currently being explored as a biomarker for diseases.

Contents

Function

Xaa-Pro dipeptidase is a cytosolic dipeptidase that hydrolyzes dipeptides with proline or hydroxyproline at the carboxy terminus (but not Pro-Pro). It is important in collagen metabolism because of the high levels of imino acids. [7] Mutations at the PEPD locus cause prolidase deficiency. This is characterised by Iminodipeptidurea, skin ulcers, mental retardation and recurrent infections.

Serum prolidase falls into the category of proteases, specifically exopeptidases. These EC numbers range from 3.4.11 to 3.4.19. [10]

Structure

Prolidases fall under a subclass of metallopeptidases that involve binuclear active site metal clusters. [11] This metal cluster facilitates catalysis by serving as a substrate binding site, activating nucleophiles, and stabilizing the transition state. Furthermore, prolidases are classified under a smaller family called "pita-bread" enzymes, which cleave amido-, imido-, and amidino- containing bonds. [12] The "pita-bread" fold, containing a metal center flanked by two well-defined substrate binding pockets enabled prolidase to specifically cleave between any non-proline amino acid and proline.

Prolidase cleavage of peptide to yield alanine and proline.png

Pfprol

The first ever solved structure of prolidase came from the hyperthermophilic archaeon Pyrococcus furiosus (Pfprol). [11] This dimer has a crystal structure shows two approximately symmetrical monomers that both have an N-terminal domain, made up of a six-stranded mixed β-sheet flanked by five α-helices, a helical linker, and C-terminal domain, consisting of a mixed six-stranded β-sheet flanked by four α-helices. The curved β-sheet of Domain II has a "pita-bread" fold. The active site lies on the inner surface of the β-sheet of Domain II, with a notable dinuclear Co cluster anchored by the side chains of two aspartate residues (Asp209 and Asp220), two glutamate residues (Glu313 and Glu327), and a histidine residue (His284). Carboxylate groups of aspartate and glutamine residues serve as bridges between the two Co atoms. In the crystallization process, the Co atoms are replaced with Zn, which hinders enzymatic activity.

Sequence homology between human and Pfprol yield only 25% identity and 43% similarity. [13]

Asp209, Asp220, Glu313, Glu327, and His284 make up the active site of prolidase from Pyrococcus furiosus (1PV9). The zinc ions are bridged by the carboxylate groups of aspartate and glutamine residues. Bond lengths between the zinc ions and carboxylate groups of the amino acids are also indicated. Pfprol active site.png
Asp209, Asp220, Glu313, Glu327, and His284 make up the active site of prolidase from Pyrococcus furiosus (1PV9). The zinc ions are bridged by the carboxylate groups of aspartate and glutamine residues. Bond lengths between the zinc ions and carboxylate groups of the amino acids are also indicated.

Human serum prolidase

Two 493 amino acid chains construct serum prolidase, held together with C2 symmetry. [14] This C2 symmetry refers to the molecule's two-fold rotational symmetry without mirror symmetry. [15] Simply put, if serum prolidase were to be rotated at a 180º angle, it would look the same, however, it does not look the same in a mirror image. Furthermore, this structure has two domains: the N-terminal domain and the C-terminal domain, the latter of which carries the active site in the amino acid residues 185-493. [14] The active site is the area on the enzyme to which the substrate binds and catalysis occurs. This C-terminal domain has the ability to covalently bond to other prolidase enzymes to create a tetramer through disulfide bonds. [14] This domain performs a "pita-bread" fold, consisting of a bimetallic active center held together by two ɑ-helices and one antiparallel β-sheet. [14] Prolidase enzyme is considered homodimeric, meaning it is formed by two identical polypeptide chains. [8] There are both hydrophilic and hydrophobic residues in this enzyme, distributed evenly throughout.

Manganese ions (Mn2+) are utilized by serum prolidase as co-factors. Research into the crystal structure has found that two Mn2+ ions are required for the catalytic activity of this enzyme. [8] This requirement leads to prolidase being deemed a metal-activated peptidase, a term used to describe enzymes that catalyze the hydrolysis reaction changing peptides into amino acids having increased ability through the existence of metal ions. It has been indicated that one Mn2+ ion is tightly bound to His370, while the second is loosely bound to Asp276. [8]

Human prolidase has four crystal structures, HsProl-Mn, HsProl-Na-GlyPro, HsProl-Mg-LeuPro, and HsProl-Mn-Pro. [14] The first of these structures, HsProl-Mn, pertains to the activity of serum prolidase before binding the substrate. [14] Furthermore, HsProl-Na-GlyPro results from substrate degradation caused by the exchange of the Mn2+ ion with Na+. This is caused by the substrate GlyPro binding to the enzyme. [14] The third crystal structure of serum prolidase is HsProl-Mg-LeuPro. This structure functions similarly to HsProl-Na-GlyPro; however, the substrate utilized in this structure is LeuPro. Additionally, Mn2+ is replaced by Mg2+. [14] These differences cause the structure to be more stable with a lower turnover rate. [14] The final crystal structure of serum prolidase is HsProl-Mn-Pro, which employs Pro as the substrate. [14] This Pro comes from the reaction being catalyzed by this enzyme. [14] The crystal structure of prolidase is well-researched and recorded in the Protein Data Bank. [16]

Function

The role of prolidase in human physiology is collagen breakdown. Collagen, the most prevalent protein in the human body, is necessary for maintaining strong connective tissues, cellular proliferation, and wound healing, among other functions. [17] As collagen is degraded, dipeptides are released as a byproduct. Serum prolidase absorbs and digests these byproducts so they can be reused in collagen production. [8] Proline is required for collagen production, further indicating the necessity of serum prolidase, as proline is a product of the prolidase reaction. [8] Wound healing is a paramount function in maintaining good health of the human body. Collagen uses its rigid properties to structurally support wounds and speed up the healing process. [8] As the wound heals, type III collagen is produced by fibroblasts, which is later replaced by type II collagen, then type I collagen. [8] These changes indicate different stages of the wound-healing process.

Due to proline's cyclic structure, only few peptidases could cleave the bond between proline and other amino acids. [18] Along with prolinase, prolidase are the only known enzymes that can break down dipeptides to yield free proline. Prolidase serve to hydrolyze both dietary and endogenous Xaa-Pro dipeptides. More specifically, it is essential in catalyzing the last step of the degradation of procollagen, collagen, and other proline-containing peptides into free amino acids to be used for cellular growth. [19] Additionally, it also participates in the process of recycling proline from Xaa-Pro dipeptides for collagen resynthesis. Proline and hydroyxyproline make up a quarter of the amino acid residues in collagen, which is the most abundant protein in the body by mass and plays an important role in maintaining connective tissue in the body. [19] [20]

Mechanism

Biochemical and structural analyses of aminopeptidase (APPro), methionine aminopeptidase (MetAP), and prolidase, all members of the "pita-bread" metalloenzymes, suggest that they share a common mechanism scheme. [12] The main difference arises in the location of the carbonyl oxygen atom of the scissile peptide bond.

Proposed mechanism scheme for metal-dependent "pita-bread" enzyme with eMetAP residue numbering. Proposed mechanism scheme for metal-dependent "pita-bread" enzyme with eMetAP residue numbering.png
Proposed mechanism scheme for metal-dependent "pita-bread" enzyme with eMetAP residue numbering.

The following mechanism shows a proposed scheme for a metal-dependent "pita-bread" enzyme with residue numbering corresponding to those found in methionine aminopeptidase from E. coli. [12] As shown in Intermediate I of the figure, three potential acidic amino acid residues interact with the N-terminus of the substrate in a fashion that is yet to be determined. The carbonyl and amide groups of the scissile peptide bond interact with the first metal ion, M1, in addition to His178 and His79, respectively. M1 and Glu204 activate a water molecule to prepare it nucleophilic attack at the carbonyl carbon of the scissile peptide bond. Then, the tetrahedral intermediate (Intermediate II) becomes stabilized from interactions with M1 and His178. Lastly, Glu204 donates a proton to the amine of the leaving peptide (P1'). This leads to the breakdown of the intermediate (Intermediate III), which retains its interactions with M1 and His178.

The reaction pathway of prolidase is a fairly complicated process with many components involved. After a proton is removed from the bridge between the two Mn2+ ions, the GlyPro substrate causes a conformational change as it binds to the active site. [8] This GlyPro is held in place by hydrogen bonds formed by multiple amino acids in this structure. [8] The Gly-N atom of the GlyPro substrate and the Gly-O atom of the peptide bond each interact with the Mn2+ ions, which are stabilized by additional amino acids, leading to polarization. [8] This reaction causes the carbonyl carbon atom located on the peptide bond to receive a positive charge, which then reacts with the hydroxide ion formed by the Mn2+ ions, creating a tetrahedral intermediate. [8] A conformational change occurs, releasing the initial product glycine while the protein is still closed. An additional conformation change from closed to open occurs when proline, the final product of this reaction, is released. [8]

Regulation

Post-translational modifications of prolidase regulate its enzymatic abilities. Phosphorylation of prolidase has been shown to increase its activity while dephosphorylation leads to a decrease in enzyme activity. [21] Analysis of known consensus sequence required for serine/threonine phosphorylation revealed that prolidase contains at least three potential sites for serine/threonine phosphorylation. Nitric oxide, both exogenously acquired and endogenously generated, was shown to increase prolidase activity in a time- and dose-dependent manner via phosphorylation at these serine and threonine sites. [22] Additionally, prolidase may also be regulated at tyrosine phosphorylation sites, which are mediated by FAK and MAPK signaling pathways. [21]

Disease relevance

The presence of serum prolidase in the blood is a good indicator of the presence and severity of many types of diseases. For instance, Type 2 Diabetes mellitus patients have elevated levels of serum prolidase. [8] This is expected because high blood glucose leads to a decrease in collagen production and inflammatory cell generation, which depreciates wound healing ability. [8] Furthermore, Rheumatoid Arthritis, Ankylosing spondylitis, and benign joint hypermobility syndrome have corresponded with low serum prolidase levels. [8] Prolidase has become a prominent marker of cancer progression in patients with various types of cancer. Depending on the elevated levels of serum prolidase in the blood, physicians are able to determine tumor size, stage of cancer, and prognosis, all of which help significantly in treating these diseases. [8]

Analysis of serum prolidase levels has been used to detect the severity of liver disease in some instances. [8] Research has indicated the correlation between chronic liver diseases and serum prolidase. For instance, one study suggested an increase in serum prolidase levels during the initial stages of cirrhotic liver fibrosis, followed by a decrease as the disease progressed. [8] Moreover, analysis of serum prolidase levels in alcoholic hepatitis patients has displayed higher levels compared to cirrhosis patients. [8]

Serum prolidase is a highly necessary enzyme in the human body. Through its many functions, most notably collagen recycling, prolidase is widely used in the overall metabolism of humans. The reaction pathway of this enzyme is key in regulating the synthesis and degradation of collagen, a vital protein necessary for multiple aspects of the body. Irregular levels of serum prolidase in the blood are indicative of various diseases and conditions in humans.

Deficiency in prolidase leads to a rare, severe autosomal recessive disorder (prolidase deficiency) that causes many chronic, debilitating health conditions in humans. [23] These phenotypical symptoms vary and may include skin ulcerations, mental retardation, splenomegaly, recurrent infections, photosensitivity, hyperkeratosis, and unusual facial appearance. Furthermore, prolidase activity was found to be abnormal compared to healthy levels in various medical conditions including but limited to: bipolar disorder, breast cancer, endometrial cancer, keloid scar formation, erectile dysfunction, liver disease, lung cancer, hypertension, melanoma, and chronic pancreatitis. [18] In some cancers with increased levels of prolidase activity, such as melanoma, the differential expression of prolidase and its substrate specificity for dipeptides with proline at the carboxyl end suggests the potential of prolidase in becoming a viable, selective endogenous enzyme target for proline prodrugs. [24] Serum prolidase enzyme activity is also currently being explored as a possible, reliable marker for diseases including chronic hepatitis B and liver fibrosis. [25] [26] [27]

Other applications

Decontamination: Prolidase from the hyperthermophilic archaeon Pyrococcus furiosus (Pfprol) shows potential for application in decontamination of organophosphorus nerve agents in chemical warfare agents. [28] Additionally, prolidase could also serve to detect fluorine-containing organophosphorus neurotoxins, like the G-type chemical warfare agents, and could antagonize organophosphorous intoxication and protect against the effects of diisopropylfluorophosphate when encapsulated in liposomes. [29] [30]

Related Research Articles

<span class="mw-page-title-main">Collagen</span> Most abundant structural protein in animals

Collagen is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole-body protein content. Collagen consists of amino acids bound together to form a triple helix of elongated fibril known as a collagen helix. It is mostly found in connective tissue such as cartilage, bones, tendons, ligaments, and skin. Vitamin C is vital for collagen synthesis, and Vitamin E improves the production of collagen.

Proline (symbol Pro or P) is an organic acid classed as a proteinogenic amino acid (used in the biosynthesis of proteins), although it does not contain the amino group -NH
2
but is rather a secondary amine. The secondary amine nitrogen is in the protonated form (NH2+) under biological conditions, while the carboxyl group is in the deprotonated −COO form. The "side chain" from the α carbon connects to the nitrogen forming a pyrrolidine loop, classifying it as a aliphatic amino acid. It is non-essential in humans, meaning the body can synthesize it from the non-essential amino acid L-glutamate. It is encoded by all the codons starting with CC (CCU, CCC, CCA, and CCG).

<span class="mw-page-title-main">Hydroxyproline</span> Chemical compound

(2S,4R)-4-Hydroxyproline, or L-hydroxyproline (C5H9O3N), is an amino acid, abbreviated as Hyp or O, e.g., in Protein Data Bank.

In chemistry, hydroxylation can refer to:

Matrix metalloproteinases (MMPs), also known as matrix metallopeptidases or matrixins, are metalloproteinases that are calcium-dependent zinc-containing endopeptidases; other family members are adamalysins, serralysins, and astacins. The MMPs belong to a larger family of proteases known as the metzincin superfamily.

<span class="mw-page-title-main">Serine protease</span> Class of enzymes

Serine proteases are enzymes that cleave peptide bonds in proteins. Serine serves as the nucleophilic amino acid at the (enzyme's) active site. They are found ubiquitously in both eukaryotes and prokaryotes. Serine proteases fall into two broad categories based on their structure: chymotrypsin-like (trypsin-like) or subtilisin-like.

β-Glucuronidase Class of enzymes

β-Glucuronidases are members of the glycosidase family of enzymes that catalyze breakdown of complex carbohydrates. Human β-glucuronidase is a type of glucuronidase that catalyzes hydrolysis of β-D-glucuronic acid residues from the non-reducing end of mucopolysaccharides such as heparan sulfate. Human β-glucuronidase is located in the lysosome. In the gut, brush border β-glucuronidase converts conjugated bilirubin to the unconjugated form for reabsorption. β-Glucuronidase is also present in breast milk, which contributes to neonatal jaundice. The protein is encoded by the GUSB gene in humans and by the uidA gene in bacteria.

<span class="mw-page-title-main">Carnitine palmitoyltransferase II deficiency</span> Medical condition

Carnitine palmitoyltransferase II deficiency, sometimes shortened to CPT-II or CPT2, is an autosomal recessively inherited genetic metabolic disorder characterized by an enzymatic defect that prevents long-chain fatty acids from being transported into the mitochondria for utilization as an energy source. The disorder presents in one of three clinical forms: lethal neonatal, severe infantile hepatocardiomuscular and myopathic.

Gelatinases are enzymes capable of degrading gelatin through hydrolysis, playing a major role in degradation of extracellular matrix and tissue remodeling. Gelatinases are a type of matrix metalloproteinase (MMP), a family of enzymes that depend on zinc as a cofactor and can break down parts of the extracellular matrix. MMPs have multiple subgroups, including gelatinase A and gelatinase B. Gelatinases are assigned a variety of Enzyme Commission numbers: gelatinase A uses 3.4.24.24, and gelatinase B uses 3.4.24.35, in which the first three numbers are same. The first digit, 3, is the class. Class 3 enzymes are hydrolases, enzymes that catalyze hydrolysis reactions, that is, they cleave bonds in presence of water. The next digit represents sub-class 4, or proteases, which are enzymes who hydrolyze peptide bonds in proteins. The next number is the sub-subclass of 24, which consists of metalloendopeptidases which contain metal ions in their active sites, in this case zinc, which help in cleaving peptide bonds. The last part of the EC number is the serial number, identifying specific enzymes within a sub-subclass. 24 represents gelatinase A, which is a metalloproteinase that breaks down gelatin and collagen, while 35 represents gelatinase B, which hydrolyzes peptide bonds.

<span class="mw-page-title-main">Prolyl isomerase</span> Enzyme

Prolyl isomerase is an enzyme found in both prokaryotes and eukaryotes that interconverts the cis and trans isomers of peptide bonds with the amino acid proline. Proline has an unusually conformationally restrained peptide bond due to its cyclic structure with its side chain bonded to its secondary amine nitrogen. Most amino acids have a strong energetic preference for the trans peptide bond conformation due to steric hindrance, but proline's unusual structure stabilizes the cis form so that both isomers are populated under biologically relevant conditions. Proteins with prolyl isomerase activity include cyclophilin, FKBPs, and parvulin, although larger proteins can also contain prolyl isomerase domains.

<span class="mw-page-title-main">Complement component 1q</span> Protein complex

The complement component 1q is a protein complex involved in the complement system, which is part of the innate immune system. C1q together with C1r and C1s form the C1 complex.

<span class="mw-page-title-main">Prolidase deficiency</span> Medical condition

Prolidase deficiency (PD) is an extremely uncommon autosomal recessive disorder associated with collagen metabolism that affects connective tissues and thus a diverse array of organ systems more broadly, though it is extremely inconsistent in its expression.

<span class="mw-page-title-main">Thermolysin</span>

Thermolysin is a thermostable neutral metalloproteinase enzyme produced by the Gram-positive bacteria Bacillus thermoproteolyticus. It requires one zinc ion for enzyme activity and four calcium ions for structural stability. Thermolysin specifically catalyzes the hydrolysis of peptide bonds containing hydrophobic amino acids. However thermolysin is also widely used for peptide bond formation through the reverse reaction of hydrolysis. Thermolysin is the most stable member of a family of metalloproteinases produced by various Bacillus species. These enzymes are also termed 'neutral' proteinases or thermolysin -like proteinases (TLPs).

<span class="mw-page-title-main">Sucrase-isomaltase</span>

Sucrase-isomaltase is a bifunctional glucosidase located on the brush border of the small intestine, encoded by the human gene SI. It is a dual-function enzyme with two GH31 domains, one serving as the isomaltase, the other as a sucrose alpha-glucosidase. It has preferential expression in the apical membranes of enterocytes. The enzyme’s purpose is to digest dietary carbohydrates such as starch, sucrose and isomaltose. By further processing the broken-down products, energy in the form of ATP can be generated.

<span class="mw-page-title-main">Carboxypeptidase A</span>

Carboxypeptidase A usually refers to the pancreatic exopeptidase that hydrolyzes peptide bonds of C-terminal residues with aromatic or aliphatic side-chains. Most scientists in the field now refer to this enzyme as CPA1, and to a related pancreatic carboxypeptidase as CPA2.

<span class="mw-page-title-main">Procollagen-proline dioxygenase</span> Enzyme

Procollagen-proline dioxygenase, commonly known as prolyl hydroxylase, is a member of the class of enzymes known as alpha-ketoglutarate-dependent hydroxylases. These enzymes catalyze the incorporation of oxygen into organic substrates through a mechanism that requires alpha-Ketoglutaric acid, Fe2+, and ascorbate. This particular enzyme catalyzes the formation of (2S, 4R)-4-hydroxyproline, a compound that represents the most prevalent post-translational modification in the human proteome.

The discovery of an orally inactive peptide from snake venom established the important role of angiotensin converting enzyme (ACE) inhibitors in regulating blood pressure. This led to the development of captopril, the first ACE inhibitor. When the adverse effects of captopril became apparent new derivates were designed. Then after the discovery of two active sites of ACE: N-domain and C-domain, the development of domain-specific ACE inhibitors began.

<span class="mw-page-title-main">Aldehyde dehydrogenase 18 family, member A1</span> Protein-coding gene in the species Homo sapiens

Delta-1-pyrroline-5-carboxylate synthetase (P5CS) is an enzyme that in humans is encoded by the ALDH18A1 gene. This gene is a member of the aldehyde dehydrogenase family and encodes a bifunctional ATP- and NADPH-dependent mitochondrial enzyme with both gamma-glutamyl kinase and gamma-glutamyl phosphate reductase activities. The encoded protein catalyzes the reduction of glutamate to delta1-pyrroline-5-carboxylate, a critical step in the de novo biosynthesis of proline, ornithine and arginine. Mutations in this gene lead to hyperammonemia, hypoornithinemia, hypocitrullinemia, hypoargininemia and hypoprolinemia and may be associated with neurodegeneration, cataracts and connective tissue diseases. Alternatively spliced transcript variants, encoding different isoforms, have been described for this gene. As reported by Bruno Reversade and colleagues, ALDH18A1 deficiency or dominant-negative mutations in P5CS in humans causes a progeroid disease known as De Barsy Syndrome.

Xaa-Pro aminopeptidase is an enzyme. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Zingibain</span> Cysteine protease enzyme

Zingibain, zingipain, or ginger protease is a cysteine protease enzyme found in ginger rhizomes. It catalyses the preferential cleavage of peptides with a proline residue at the P2 position. It has two distinct forms, ginger protease I (GP-I) and ginger protease II (GP-II).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000124299 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000063931 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Endo F, Tanoue A, Nakai H, et al. (March 1989). "Primary structure and gene localization of human prolidase". The Journal of Biological Chemistry. 264 (8): 4476–81. doi: 10.1016/S0021-9258(18)83768-1 . PMID   2925654.
  6. Tanoue A, Endo F, Matsuda I (July 1990). "Structural organization of the gene for human prolidase (peptidase D) and demonstration of a partial gene deletion in a patient with prolidase deficiency". The Journal of Biological Chemistry. 265 (19): 11306–11. doi: 10.1016/S0021-9258(19)38592-8 . PMID   1972707.
  7. 1 2 "Entrez Gene: PEPD peptidase D".
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Eni-Aganga I, Lanaghan ZM, Balasubramaniam M, et al. (2021-08-31). "PROLIDASE: A Review from Discovery to its Role in Health and Disease". Frontiers in Molecular Biosciences. 8: 723003. doi: 10.3389/fmolb.2021.723003 . PMC   8438212 . PMID   34532344.
  9. "PEPD gene: MedlinePlus Genetics". medlineplus.gov. Retrieved 2023-10-24.
  10. Ferreira GC (January 2021). "Cofactors and Coenzymes | Heme Synthesis☆". In Jez J (ed.). Encyclopedia of Biological Chemistry III (Third ed.). Oxford: Elsevier. pp. 356–362. doi:10.1016/b978-0-12-809633-8.21267-3. ISBN   978-0-12-822040-5. S2CID   240746340 . Retrieved 2023-10-24.
  11. 1 2 Maher MJ, Ghosh M, Grunden AM, et al. (March 2004). "Structure of the prolidase from Pyrococcus furiosus". Biochemistry. 43 (10): 2771–83. doi:10.1021/bi0356451. PMID   15005612.
  12. 1 2 3 4 Lowther WT, Matthews BW (December 2002). "Metalloaminopeptidases: common functional themes in disparate structural surroundings". Chemical Reviews. 102 (12): 4581–608. doi:10.1021/cr0101757. PMID   12475202.
  13. Lupi A, Tenni R, Rossi A, et al. (November 2008). "Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations". Amino Acids. 35 (4): 739–52. doi:10.1007/s00726-008-0055-4. PMID   18340504. S2CID   925797.
  14. 1 2 3 4 5 6 7 8 9 10 11 Wilk P, Uehlein M, Kalms J, et al. (September 2017). "Substrate specificity and reaction mechanism of human prolidase". The FEBS Journal. 284 (17): 2870–2885. doi: 10.1111/febs.14158 . PMID   28677335.
  15. "the C2 point group". www.cup.uni-muenchen.de. Retrieved 2023-10-24.
  16. "Crystal Structure of Human Prolidase: 3D View: 2OKN". RCSB Protein Data Bank.
  17. "Collagen: What It Is, Types, Function & Benefits". Cleveland Clinic. Retrieved 2023-10-24.
  18. 1 2 Kitchener RL, Grunden AM (August 2012). "Prolidase function in proline metabolism and its medical and biotechnological applications". Journal of Applied Microbiology. 113 (2): 233–47. doi:10.1111/j.1365-2672.2012.05310.x. PMID   22512465. S2CID   22164798.
  19. 1 2 Surazynski A, Miltyk W, Palka J, et al. (November 2008). "Prolidase-dependent regulation of collagen biosynthesis". Amino Acids. 35 (4): 731–8. doi:10.1007/s00726-008-0051-8. PMID   18320291. S2CID   13025572.
  20. Phang JM, Donald SP, Pandhare J, et al. (November 2008). "The metabolism of proline, a stress substrate, modulates carcinogenic pathways". Amino Acids. 35 (4): 681–90. doi:10.1007/s00726-008-0063-4. PMID   18401543. S2CID   26081769.
  21. 1 2 Surazyński A, Pałka J, Wołczyński S (April 2001). "Phosphorylation of prolidase increases the enzyme activity". Molecular and Cellular Biochemistry. 220 (1–2): 95–101. doi:10.1023/a:1010849100540. PMID   11451388. S2CID   25456347.
  22. Surazynski A, Liu Y, Miltyk W, et al. (December 2005). "Nitric oxide regulates prolidase activity by serine/threonine phosphorylation". Journal of Cellular Biochemistry. 96 (5): 1086–1094. doi:10.1002/jcb.20631. PMID   16167338. S2CID   33258991.
  23. Viglio S, Annovazzi L, Conti B, et al. (February 2006). "The role of emerging techniques in the investigation of prolidase deficiency: from diagnosis to the development of a possible therapeutical approach". Journal of Chromatography B. 832 (1): 1–8. doi:10.1016/j.jchromb.2005.12.049. PMID   16434239.
  24. Mittal S, Song X, Vig BS, et al. (2005). "Prolidase, a potential enzyme target for melanoma: design of proline-containing dipeptide-like prodrugs". Molecular Pharmaceutics. 2 (1): 37–46. doi:10.1021/mp049922p. PMID   15804176.
  25. Şen V, Uluca Ü, Ece A, et al. (November 2014). "Serum prolidase activity and oxidant-antioxidant status in children with chronic hepatitis B virus infection". Italian Journal of Pediatrics. 40 (1): 95. doi: 10.1186/s13052-014-0095-1 . PMC   4247636 . PMID   25425101.
  26. Duygu F, Aksoy N, Cicek AC, et al. (September 2013). "Does prolidase indicate worsening of hepatitis B infection?". Journal of Clinical Laboratory Analysis. 27 (5): 398–401. doi:10.1002/jcla.21617. PMC   6807447 . PMID   24038226.
  27. Stanfliet JC, Locketz M, Berman P, et al. (May 2015). "Evaluation of the utility of serum prolidase as a marker for liver fibrosis". Journal of Clinical Laboratory Analysis. 29 (3): 208–13. doi:10.1002/jcla.21752. PMC   6807100 . PMID   24798655.
  28. Theriot CM, Du X, Tove SR, et al. (August 2010). "Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures". Applied Microbiology and Biotechnology. 87 (5): 1715–26. doi:10.1007/s00253-010-2614-3. PMID   20422176. S2CID   1363629.
  29. Simonian AL, Grimsley JK, Flounders AW, et al. (2001). "Enzyme-based biosensor for the direct detection of fluorine-containing organophosphates". Analytica Chimica Acta. 442 (1): 15–23. Bibcode:2001AcAC..442...15S. doi:10.1016/S0003-2670(01)01131-X.
  30. Petrikovics I, Cheng TC, Papahadjopoulos D, et al. (September 2000). "Long circulating liposomes encapsulating organophosphorus acid anhydrolase in diisopropylfluorophosphate antagonism". Toxicological Sciences. 57 (1): 16–21. doi: 10.1093/toxsci/57.1.16 . PMID   10966507.

Further reading