Prolidase deficiency

Last updated
Prolidase deficiency
Other namesHyperimidodipeptiduria
Protein PEPD PDB 2iw2.png
Structure of functional prolidase enzyme, based on PDB data.
Specialty Medical genetics   OOjs UI icon edit-ltr-progressive.svg

Prolidase deficiency (PD) is an extremely uncommon autosomal recessive disorder associated with collagen metabolism [1] that affects connective tissues and thus a diverse array of organ systems more broadly, though it is extremely inconsistent in its expression.

Contents

Collagen is a structural protein found i.a. in bone, skin and connective tissues that is broken down into iminodipeptides at the end of its lifecycle. Of these dipeptides, those containing C-terminal proline or hydroxyproline would normally be broken down further by the enzyme Prolidase, recovering and thus recycling the constituent amino acids.

Due to a genetic defect, prolidase activity in individuals with PD is either knocked out or severely reduced. Those affected therefore eliminate excessive amounts of iminodipeptides in their urine, [2] wasting this precious resource, with debilitating effects.

Symptoms and signs

Prolidase deficiency generally becomes evident during infancy, but initial symptoms can first manifest anytime from birth to young adulthood. The condition results in a very diverse set symptoms, [3] the severity of which can vary significantly between patients, depending on the degree to which prolidase activity is hampered by the individual underlying mutation(s) in each case. It is even possible, though rare, for affected individuals to be asymptomatic, in which case the disorder can only be identified through laboratory screening of the prospective patient and/or their extended family.[ citation needed ]

One of the signature features of PD is the elimination of high quantities of peptides through urine.[ citation needed ]

In addition, most of those affected exhibit persistent skin lesions (starting from a mild rash) or ulcers, primarily on the legs and feet, the formation of which normally begins during childhood. [3] Clinically, these, among other dermatological issues, represent the most distinguishing and most frequent symptoms. [4] These may never recede, potentially leading to severe infections that can, in the worst case, necessitate amputation.

PD patients exhibit a weak immune system and markedly elevated vulnerability to infections in general, and particularly those of the respiratory system, leading some who suffer from PD to acquire recurrent lung disease. They may also have an enlarged spleen (splenomegaly), and on some occasions the spleen and liver may both be enlarged (hepatosplenomegaly). [3] Photosensitivity and hyperkeratosis have been associated with PD. Abnormal facial characteristics, consisting of pronounced eyes which are spaced far apart (hypertelorism), a high forehead, a compressed bridge of the nose or saddle nose, and a small lower jaw and chin (micrognathia), are also observed in the majority of cases. [3]

Those affected by PD can also suffer intellectual disabilities (approx. 75% of recorded cases do) ranging from mild to severe – mental development during childhood may therefore progress more slowly.

Causes

Prolidase deficiency is the result of mutations on the PEPD gene, located on chromosome 19 and coding for the prolidase Enzyme, also known as peptidase-D. [3] At least 19 different mutations in the PEPD gene have been identified in individuals affected by the disorder. [5]

Prolidase cleavage of peptide to yield alanine and proline.png

Prolidase deficiency has an autosomal recessive pattern of inheritance. Autosomal recessive - en.svg
Prolidase deficiency has an autosomal recessive pattern of inheritance.

Prolidase is involved in the degradation of certain iminodipeptides (those containing C-terminal proline or hydroxyproline) formed during the breakdown of collagen, recycling the constituent amino acids (proline and hydroxyproline) and making them available for the cell to reuse – not least in the synthesis of new collagen. This recycling by prolidase, seen in the image above, is essential for maintaining proline-based systems in the cell, such as the collagen-rich extracellular matrix (ECM), which serves to physically support the structure of internal organs and connective tissues. Inadequate recycling due to a dysfunctional prolidase enzyme, caused by an appropriate mutation in the pertinent gene, leads to the deterioration of that support structure and therefore the connective tissue of the skin, capillaries, and the lymphatic tissue, as is the case in PD.[ citation needed ]

In particular, it has been proposed that the buildup of non-degraded dipeptides might induce programmed cell-death (apoptosis), whereafter the cell's contents would be expelled into the neighbouring tissue potentially resulting in inflammation and giving rise to the dermatological problems seen in PD. Similarly, a dysfunctional collagen metabolism will likely interfere with physiological remodelling processes of the extracellular matrix (which require collagen to be dynamically degraded and rebuilt), which might cause problems with the skin, as well. [ citation needed ]

The mental impairment observed in those with PD might reasonably arise from complications involving neuropeptides, proteins that have an abundance of proline and are involved with communication in the brain.

The condition is inherited in an autosomal recessive fashion, meaning that both copies of the gene contained in every cell (both alleles) are mutated. Each of the parents of the person who suffers from an autosomal recessive disorder possesses one copy of the mutant gene, but they usually do not exhibit the signs and symptoms of the disorder, as their other copy is functional and can compensate for any deleterious effects. [3]

Diagnosis

PD diagnosis is based primarily on the presence and position of ulcers on the skin, as well as identifying particular protein markers in urine. To confirm the diagnosis, a blood test is required to measure prolidase activity.[ citation needed ]

Treatment

No curative treatment is available for prolidase deficiency at this time, although palliative treatment is possible to some extent.

The latter mainly focuses on treating the skin lesions through standard methods and stalling collagen degradation (or boosting prolidase performance, where possible), so as to keep the intracellular dipeptide levels low and give the cells time to resynthesise or absorb what proline they cannot recycle so as to be able to rebuild what collagen does degrade. Patients can be treated orally with ascorbate (a.k.a. vitamin C, a cofactor of prolyl hydroxylase, an enzyme that hydroxylates proline, increasing collagen stability), manganese (a cofactor of prolidase), suppression of collagenase (a collagen degrading enzyme), and local applications of ointments that contain L-glycine and L-proline. The response to the treatment is inconsistent between affected individuals. [6]

A therapeutic approach based on enzyme replacement (administering functional prolidase) is under consideration. [7]

Due to the weakened immune response in PD cases, it is also of paramount importance to keep any infections under control, often with heavy antibiotics.

Related Research Articles

Collagen is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole-body protein content. Collagen consists of amino acids bound together to form a triple helix of elongated fibril known as a collagen helix. It is mostly found in connective tissue such as cartilage, bones, tendons, ligaments, and skin.

Mucopolysaccharidosis Medical condition

Mucopolysaccharidoses are a group of metabolic disorders caused by the absence or malfunctioning of lysosomal enzymes needed to break down molecules called glycosaminoglycans (GAGs). These long chains of sugar carbohydrates occur within the cells that help build bone, cartilage, tendons, corneas, skin and connective tissue. GAGs are also found in the fluids that lubricate joints.

Pyruvate kinase deficiency Medical condition

Pyruvate kinase deficiency is an inherited metabolic disorder of the enzyme pyruvate kinase which affects the survival of red blood cells. Both autosomal dominant and recessive inheritance have been observed with the disorder; classically, and more commonly, the inheritance is autosomal recessive. Pyruvate kinase deficiency is the second most common cause of enzyme-deficient hemolytic anemia, following G6PD deficiency.

Gunther disease Medical condition

Gunther disease, is a congenital form of erythropoietic porphyria. The word porphyria originated from the Greek word porphura. Porphura actually means "purple pigment", which, in suggestion, the color that the body fluid changes when a person has Gunther's disease. It is a rare, autosomal recessive metabolic disorder affecting heme, caused by deficiency of the enzyme uroporphyrinogen cosynthetase. It is extremely rare, with a prevalence estimated at 1 in 1,000,000 or less. There have been times that prior to birth of a fetus, Gunther's disease has been shown to lead to anemia. In milder cases patients have not presented any symptoms until they have reached adulthood. In Gunther's disease, porphyrins are accumulated in the teeth and bones and an increased amount are seen in the plasma, bone marrow, feces, red blood cells, and urine.

Menkes disease X-linked recessive copper-transport disorder

Menkes disease (MNK), also known as Menkes syndrome, is an X-linked recessive disorder caused by mutations in genes coding for the copper-transport protein ATP7A, leading to copper deficiency. Characteristic findings include kinky hair, growth failure, and nervous system deterioration. Like all X-linked recessive conditions, Menkes disease is more common in males than in females. The disorder was first described by John Hans Menkes in 1962.

Holocarboxylase synthetase deficiency Medical condition

Holocarboxylase synthetase deficiency is an inherited metabolic disorder in which the body is unable to use the vitamin biotin effectively. This disorder is classified as a multiple carboxylase deficiency, a group of disorders characterized by impaired activity of certain enzymes that depend on biotin. Symptoms are very similar to biotinidase deficiency and treatment – large doses of biotin – is also the same.

Biotinidase deficiency Medical condition

Biotinidase deficiency is an autosomal recessive metabolic disorder in which biotin is not released from proteins in the diet during digestion or from normal protein turnover in the cell. This situation results in biotin deficiency.

Tetrahydrobiopterin deficiency Medical condition

Tetrahydrobiopterin deficiency (THBD, BH4D) is a rare metabolic disorder that increases the blood levels of phenylalanine. Phenylalanine is an amino acid obtained normally through the diet, but can be harmful if excess levels build up, causing intellectual disability and other serious health problems. In healthy individuals, it is metabolised (hydroxylated) into tyrosine, another amino acid, by phenylalanine hydroxylase. However, this enzyme requires tetrahydrobiopterin as a cofactor and thus its deficiency slows phenylalanine metabolism.

Malonyl-CoA decarboxylase deficiency Medical condition

Malonyl-CoA decarboxylase deficiency (MCD), is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-CoA decarboxylase. This enzyme breaks down Malonyl-CoA into Acetyl-CoA and carbon dioxide.

Short-chain acyl-coenzyme A dehydrogenase deficiency Medical condition

Short-chain acyl-coenzyme A dehydrogenase deficiency (SCADD), is an autosomal recessive fatty acid oxidation disorder which affects enzymes required to break down a certain group of fats called short chain fatty acids.

Tangier disease or hypoalphalipoproteinemia is an extremely rare inherited disorder characterized by a severe reduction in the amount of high density lipoprotein (HDL), often referred to as "good cholesterol", in the bloodstream. Worldwide, approximately 100 cases have even been identified.

Glutathione synthetase deficiency (GSD) is a rare autosomal recessive metabolic disorder that prevents the production of glutathione. Glutathione helps prevent damage to cells by neutralizing harmful molecules generated during energy production. Glutathione also plays a role in processing medications and cancer-causing compounds (carcinogens), and building DNA, proteins, and other important cellular components.

Purine nucleoside phosphorylase deficiency Medical condition

Purine nucleoside phosphorylase deficiency, is a rare autosomal recessive metabolic disorder which results in immunodeficiency.

Essential fructosuria Medical condition

Essential fructosuria, caused by a deficiency of the enzyme hepatic fructokinase, is a clinically benign condition characterized by the incomplete metabolism of fructose in the liver, leading to its excretion in urine. Fructokinase is the first enzyme involved in the degradation of fructose to fructose-1-phosphate in the liver.

Hyperprolinemia Medical condition

Hyperprolinemia is a condition which occurs when the amino acid proline is not broken down properly by the enzymes proline oxidase or pyrroline-5-carboxylate dehydrogenase, causing a buildup of proline in the body.

PEPD

Xaa-Pro dipeptidase, also known as prolidase, is an enzyme that in humans is encoded by the PEPD gene.

Carnosinemia Disease

Carnosinemia, is a rare autosomal recessive metabolic disorder caused by a deficiency of carnosinase, a dipeptidase.

Jansky–Bielschowsky disease Medical condition

Jansky–Bielschowsky disease is an extremely rare autosomal recessive genetic disorder that is part of the neuronal ceroid lipofuscinosis (NCL) family of neurodegenerative disorders. It is caused by the accumulation of lipopigments in the body due to a deficiency in tripeptidyl peptidase I as a result of a mutation in the TPP1 gene. Symptoms appear between ages 2 and 4 and consist of typical neurodegenerative complications: loss of muscle function (ataxia), drug resistant seizures (epilepsy), apraxia, development of muscle twitches (myoclonus), and vision impairment. This late-infantile form of the disease progresses rapidly once symptoms are onset and ends in death between age 8 and teens. The prevalence of Jansky–Bielschowsky disease is unknown, however NCL collectively affects an estimated 1 in 100,000 individuals worldwide. Jansky–Bielschowsky disease is related to late-infantile Batten disease and LINCL, and is under the umbrella of neuronal ceroid lipofuscinosis.

Iminoglycinuria Medical condition

Iminoglycinuria, is an autosomal recessive disorder of renal tubular transport affecting reabsorption of the amino acid glycine, and the imino acids proline and hydroxyproline. This results in excess urinary excretion of all three acids.

Wrinkly skin syndrome(WSS) is a rare genetic condition characterized by sagging, wrinkled skin, low skin elasticity, and delayed fontanel closure along with a range of other symptoms. The disorder exhibits an autosomal recessive inheritance pattern with mutations in the ATP6V0A2 gene, leading to abnormal glycosylation events. There are only about 30 known cases of WSS as of 2010. Given its rarity and symptom overlap to other dermatological conditions, reaching an accurate diagnosis is difficult and requires specialized dermatological testing. Limited treatment options are available but long-term prognosis is variable from patient-to-patient, on the basis of individual case studies. Some skin symptoms recede with increasing age while progressive neurological advancement of the disorder causes seizures and mental deterioration later in life for some patients.

References

  1. Theriot, CM (2009). "Biotechnological applications of recombinant microbial prolidases". Adv Appl Microbiol. 68: 99–132. doi:10.1016/S0065-2164(09)01203-9. PMID   19426854.
  2. Saudubray, Jean-Marie. "Prolidase Deficiency" (PDF). Orpha Net. Retrieved 2012-11-30.
  3. 1 2 3 4 5 6 "Prolidase Deficiency". Genetics Home Reference. Retrieved 2012-11-30.
  4. Andrews, James. "Prolidase Defiency". MD Consult. Retrieved 2012-11-30.
  5. "PEPD". Genetics Home Reference. Retrieved 2012-11-30.
  6. "Prolidase Deficiency" (PDF). Climb National Information Centre for Metabolic Diseases. Retrieved 2012-11-30.
  7. Viglio S, Annovazzi L, Conti B, Genta I, Perugini P, Zanone C, Casado B, Cetta G, Iadarola P (Feb 2006). "The role of emerging techniques in the investigation of prolidase deficiency: from diagnosis to the development of a possible therapeutical approach". Journal of Chromatography B. 832 (1): 1–8. doi:10.1016/j.jchromb.2005.12.049. PMID   16434239.
Classification
D
External resources