D-Glyceric acidemia

Last updated
D-Glyceric acidemia
Other namesD-glycerate kinase deficiency
Autosomal recessive - en.svg
This condition is inherited in an autosomal recessive manner.

D-Glyceric Acidemia (a.k.a. D-Glyceric Aciduria) is an inherited disease, in the category of inborn errors of metabolism. It is caused by a mutation in the gene GLYCTK, which encodes for the enzyme glycerate kinase .

Contents

Presentation

Pathophysiology

Glycerate kinase is an enzyme that catalyzes the conversion of D-glyceric acid (a.k.a. D-glycerate) to 2-phosphoglycerate. This conversion is an intermediary reaction found in several metabolic pathways, including the degradation (break-down; catabolism) of serine, [1] as well as the breakdown of fructose. [2]

A deficiency in glycerate kinase activity leads to the accumulation of D-glyceric acid (a.k.a. D-glycerate) in bodily fluids and tissues. [3] D-glyceric acid can be measured in a laboratory that performs analyte testing for organic acids in blood (plasma) and urine. [4]

Symptoms of the disease (in its most severe form) include progressive neurological impairment, mental/motor retardation, hypotonia, seizures, failure to thrive and metabolic acidosis. [5]

Diagnosis

Differential diagnosis

D-Glyceric acidemia should not be confused with L-Glyceric acidemia (a.k.a. L-glyceric aciduria, a.k.a. primary hyperoxaluria type II [6] ), which is associated with mutations in the GRHPR (encoding for the enzyme 'glyoxylate reductase/hydroxypyruvate reductase'). [7] [8]

Treatment

Related Research Articles

<span class="mw-page-title-main">Methylmalonic acidemias</span> Medical condition

Methylmalonic acidemias, also called methylmalonic acidurias, are a group of inherited metabolic disorders, that prevent the body from properly breaking down proteins and fats. This leads to a buildup of a toxic level of methylmalonic acid in body liquids and tissues. Due to the disturbed branched-chain amino acids (BCAA) metabolism, they are among the classical organic acidemias.

Inborn errors of metabolism form a large class of genetic diseases involving congenital disorders of enzyme activities. The majority are due to defects of single genes that code for enzymes that facilitate conversion of various substances (substrates) into others (products). In most of the disorders, problems arise due to accumulation of substances which are toxic or interfere with normal function, or due to the effects of reduced ability to synthesize essential compounds. Inborn errors of metabolism are often referred to as congenital metabolic diseases or inherited metabolic disorders. Another term used to describe these disorders is "enzymopathies". This term was created following the study of biodynamic enzymology, a science based on the study of the enzymes and their products. Finally, inborn errors of metabolism were studied for the first time by British physician Archibald Garrod (1857–1936), in 1908. He is known for work that prefigured the "one gene–one enzyme" hypothesis, based on his studies on the nature and inheritance of alkaptonuria. His seminal text, Inborn Errors of Metabolism, was published in 1923.

<span class="mw-page-title-main">Isovaleric acidemia</span> Medical condition disrupting normal metabolism

Isovaleric acidemia is a rare autosomal recessive metabolic disorder which disrupts or prevents normal metabolism of the branched-chain amino acid leucine. It is a classical type of organic acidemia.

<span class="mw-page-title-main">Malonic aciduria</span> Medical condition

Malonic aciduria or malonyl-CoA decarboxylase deficiency (MCD) is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-CoA decarboxylase. This enzyme breaks down Malonyl-CoA into acetyl-CoA and carbon dioxide.

<span class="mw-page-title-main">Methylmalonyl-CoA mutase deficiency</span> Medical condition

Methylmalonyl-CoA mutase is a mitochondrial homodimer apoenzyme that focuses on the catalysis of methylmalonyl CoA to succinyl CoA. The enzyme is bound to adenosylcobalamin, a hormonal derivative of vitamin B12 in order to function. Methylmalonyl-CoA mutase deficiency is caused by genetic defect in the MUT gene responsible for encoding the enzyme. Deficiency in this enzyme accounts for 60% of the cases of methylmalonic acidemia.

<span class="mw-page-title-main">Methylmalonyl-CoA mutase</span> Mammalian protein found in Homo sapiens

Methylmalonyl-CoA mutase (EC 5.4.99.2, MCM), mitochondrial, also known as methylmalonyl-CoA isomerase, is a protein that in humans is encoded by the MUT gene. This vitamin B12-dependent enzyme catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA in humans. Mutations in MUT gene may lead to various types of methylmalonic aciduria.

<span class="mw-page-title-main">Glutaryl-CoA dehydrogenase</span> Protein-coding gene in the species Homo sapiens

Glutaryl-CoA dehydrogenase (GCDH) is an enzyme encoded by the GCDH gene on chromosome 19. The protein belongs to the acyl-CoA dehydrogenase family (ACD). It catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and carbon dioxide in the degradative pathway of L-lysine, L-hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor. The enzyme exists in the mitochondrial matrix as a homotetramer of 45-kD subunits. Mutations in this gene result in the metabolic disorder glutaric aciduria type 1, which is also known as glutaric acidemia type I. Alternative splicing of this gene results in multiple transcript variants.

<span class="mw-page-title-main">3-Hydroxy-3-methylglutaryl-CoA lyase</span> Class of enzymes

3-Hydroxy-3-methylglutaryl-CoA lyase is an enzyme (EC 4.1.3.4 that in human is encoded by the HMGCL gene located on chromosome 1. It is a key enzyme in ketogenesis. It is a ketogenic enzyme in the liver that catalyzes the formation of acetoacetate from HMG-CoA within the mitochondria. It also plays a prominent role in the catabolism of the amino acid leucine.

<span class="mw-page-title-main">Glycerate dehydrogenase</span>

In enzymology, a glycerate dehydrogenase (EC 1.1.1.29) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glyoxylate reductase</span> Enzyme

Glyoxylate reductase, first isolated from spinach leaves, is an enzyme that catalyzes the reduction of glyoxylate to glycolate, using the cofactor NADH or NADPH.

In enzymology, a hydroxypyruvate reductase (EC 1.1.1.81) is an enzyme that catalyzes the chemical reaction

Organic acidemia is a term used to classify a group of metabolic disorders which disrupt normal amino acid metabolism, particularly branched-chain amino acids, causing a buildup of acids which are usually not present.

In enzymology, a glycerate kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoglycerate dehydrogenase</span> Metabolic enzyme PHGDH

Phosphoglycerate dehydrogenase (PHGDH) is an enzyme that catalyzes the chemical reactions

<span class="mw-page-title-main">GRHPR</span> Protein-coding gene in the species Homo sapiens

Glyoxylate reductase/hydroxypyruvate reductase is an enzyme that in humans is encoded by the GRHPR gene.

<span class="mw-page-title-main">L2HGDH</span> Protein-coding gene in the species Homo sapiens

L-2-hydroxyglutarate dehydrogenase, mitochondrial is an enzyme that in humans is encoded by the L2HGDH gene, also known as C14orf160, on chromosome 14.

<span class="mw-page-title-main">Urocanic aciduria</span> Medical condition

Urocanic aciduria is an autosomal recessive metabolic disorder caused by a deficiency of the enzyme urocanase. It is a secondary disorder of histidine metabolism.

<span class="mw-page-title-main">Inborn errors of carbohydrate metabolism</span> Medical condition

Inborn errors of carbohydrate metabolism are inborn error of metabolism that affect the catabolism and anabolism of carbohydrates.

Glyoxylate and dicarboxylate metabolism describes a variety of reactions involving glyoxylate or dicarboxylates. Glyoxylate is the conjugate base of glyoxylic acid, and within a buffered environment of known pH such as the cell cytoplasm these terms can be used almost interchangeably, as the gain or loss of a hydrogen ion is all that distinguishes them, and this can occur in the aqueous environment at any time. Likewise dicarboxylates are the conjugate bases of dicarboxylic acids, a general class of organic compounds containing two carboxylic acid groups, such as oxalic acid or succinic acid.

Combined malonic and methylmalonic aciduria (CMAMMA), also called combined malonic and methylmalonic acidemia is an inherited metabolic disease characterized by elevated levels of malonic acid and methylmalonic acid. However, the methylmalonic acid levels exceed those of malonic acid. CMAMMA is not only an organic aciduria but also a defect of mitochondrial fatty acid synthesis (mtFASII). Some researchers have hypothesized that CMAMMA might be one of the most common forms of methylmalonic acidemia, and possibly one of the most common inborn errors of metabolism. Due to being infrequently diagnosed, it most often goes undetected.

References

  1. Surtees, Robert; Poll-The, Bwee-Tien; Berger, Ruud; Duran, Marinus; Snell, Keith; Koning, Tom J. de (May 2003). "Biochem. J. (2003) 371, 653-661 - T.J. de Koning and others - l-Serine in disease and development". Biochemical Journal. 371 (3): 653–661. doi:10.1042/bj20021785. PMC   1223326 . PMID   12534373.
  2. Hommes, F. A. (1993). "Inborn errors of fructose metabolism". Am J Clin Nutr. 58 (5): 788S–795S. doi: 10.1093/ajcn/58.5.788S . PMID   8213611.
  3. "GLYCTK - glycerate kinase - Genetics Home Reference".
  4. "GeneTests: Search Results".
  5. Physician's Guide to the Laboratory Diagnosis of Metabolic Diseases. Springer. 2003. ISBN   9783642627095.
  6. "# 260000 HYPEROXALURIA, PRIMARY, TYPE II; HP2". OMIM . Retrieved 2023-10-05.
  7. "Primary Hyperoxaluria Type 2". GeneReviews®. University of Washington, Seattle. 1993.
  8. "OMIM Entry - * 604296 - GLYOXYLATE REDUCTASE/HYDROXYPYRUVATE REDUCTASE; GRHPR".