2-Hydroxyglutaric aciduria

Last updated
2-Hydroxyglutaric aciduria
Alpha-hydroxyglutaric acid.png
Alpha-Hydroxyglutaric acid

2-hydroxyglutaric aciduria is a rare neurometabolic disorder characterized by the significantly elevated levels of hydroxyglutaric acid in one's urine. It is either autosomal recessive or autosomal dominant. [1]

Contents

Presentation

The signs/symptoms of this condition are consistent with the following: [2]

Cause

Most forms of 2-Hydroxyglutaric aciduria have an autosomal recessive pattern of inheritance. Autorecessive.svg
Most forms of 2-Hydroxyglutaric aciduria have an autosomal recessive pattern of inheritance.

Mutation in several genes can lead to different types of 2-hydroxyglutaric aciduria. For example, the D2HGDH and L2HGDH genes provide instructions for making enzymes that are found in mitochondria - in which these enzymes break down D-2-hydroxyglutarate and L-2-hydroxyglutarate, respectively, as a part of normal reaction series that generate energy for cell activities. Any mutations occur in either of these genes would interrupt the functional enzymes and allow both 2-hydroxyglutarates to accumulate in cells, which cause 2-hydroxyglutaric aciduria type I. Moreover, it is known that type II for L-2-hydroxyglutaric aciduria and a mixed type for both 2-hydroxyglutarates come from mutations in IDH2 gene and SLC25A1 gene, respectively. [3] [4]

Diagnosis

Classification

2-hydroxyglutaric aciduria is an organic aciduria, and because of the stereoisomeric property of 2-hydroxyglutarate different variants of this disorder are distinguished:

L-2-hydroxyglutaric aciduria

The L-2 form is more common, severe, and mainly affects the central nervous system. The basal ganglia are affected, and cystic cavitations in the white matter of the brain are common, beginning in infancy. This form is chronic, with early symptoms such as hypotonia, tremors, and epilepsy declining into spongiform leukoencephalopathy, muscular choreodystonia, mental retardation, and psychomotor regression. [5]

It is associated with L2HGDH, which encodes L-2-hydroxyglutarate dehydrogenase. [6] L-2-hydroxyglutarate is produced by promiscuous action of malate dehydrogenase on 2-oxoglutarate, and L-2-hydroxyglutarate dehydrogenase is an example of a metabolite repair enzyme that oxidizes L-2-hydroxyglutarate back to 2-oxoglutarate. [7]

D-2-hydroxyglutaric aciduria

The D2 form is rare, with symptoms including macrocephaly, cardiomyopathy, mental retardation, hypotonia, and cortical blindness. [8] It is caused by recessive mutations in D2HGDH [9] (type I) or by dominant gain-of-function mutations in IDH2 [10] (type II).

Combined D-2- and L-2-hydroxyglutaric aciduria

The combined form is characterized by severe early-onset epileptic encephalopathy and absence of developmental progress. [11] It is caused by recessive mutations in SLC25A1 encoding the mitochondrial citrate carrier. [12]

Treatment

The treatment of 2-Hydroxyglutaric aciduria is based on seizure control, the prognosis depends on how severe the condition is. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Isocitrate dehydrogenase</span> Class of enzymes

Isocitrate dehydrogenase (IDH) (EC 1.1.1.42) and (EC 1.1.1.41) is an enzyme that catalyzes the oxidative decarboxylation of isocitrate, producing alpha-ketoglutarate (α-ketoglutarate) and CO2. This is a two-step process, which involves oxidation of isocitrate (a secondary alcohol) to oxalosuccinate (a ketone), followed by the decarboxylation of the carboxyl group beta to the ketone, forming alpha-ketoglutarate. In humans, IDH exists in three isoforms: IDH3 catalyzes the third step of the citric acid cycle while converting NAD+ to NADH in the mitochondria. The isoforms IDH1 and IDH2 catalyze the same reaction outside the context of the citric acid cycle and use NADP+ as a cofactor instead of NAD+. They localize to the cytosol as well as the mitochondrion and peroxisome.

Glutaric acidemia type 1 (GA1) is an inherited disorder in which the body is unable to completely break down the amino acids lysine, hydroxylysine and tryptophan. Excessive levels of their intermediate breakdown products can accumulate and cause damage to the brain, but particularly the basal ganglia, which are regions that help regulate movement. GA1 causes secondary carnitine deficiency, as glutaric acid, like other organic acids, is detoxified by carnitine. Mental retardation may occur.

<span class="mw-page-title-main">ACADS</span> Protein-coding gene in humans

Acyl-CoA dehydrogenase, C-2 to C-3 short chain is an enzyme that in humans is encoded by the ACADS gene. This gene encodes a tetrameric mitochondrial flavoprotein, which is a member of the acyl-CoA dehydrogenase family. This enzyme catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway. The ACADS gene associated with short-chain acyl-coenzyme A dehydrogenase deficiency.

<span class="mw-page-title-main">Glutaryl-CoA dehydrogenase</span> Protein-coding gene in the species Homo sapiens

Glutaryl-CoA dehydrogenase (GCDH) is an enzyme encoded by the GCDH gene on chromosome 19. The protein belongs to the acyl-CoA dehydrogenase family (ACD). It catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and carbon dioxide in the degradative pathway of L-lysine, L-hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor. The enzyme exists in the mitochondrial matrix as a homotetramer of 45-kD subunits. Mutations in this gene result in the metabolic disorder glutaric aciduria type 1, which is also known as glutaric acidemia type I. Alternative splicing of this gene results in multiple transcript variants.

In enzymology, an L-2-hydroxyglutarate dehydrogenase is an enzyme that catalyzes the chemical reaction

In enzymology, a 2-hydroxyglutarate synthase (EC 2.3.3.11) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoglycerate dehydrogenase</span> Metabolic enzyme PHGDH

Phosphoglycerate dehydrogenase (PHGDH) is an enzyme that catalyzes the chemical reactions

<span class="mw-page-title-main">Aldehyde dehydrogenase 5 family, member A1</span> Protein-coding gene in the species Homo sapiens

Succinate-semialdehyde dehydrogenase, mitochondrial is an enzyme that in humans is encoded by the ALDH5A1 gene.

<span class="mw-page-title-main">IDH2</span>

Isocitrate dehydrogenase [NADP], mitochondrial is an enzyme that in humans is encoded by the IDH2 gene.

<span class="mw-page-title-main">D2HGDH</span> Protein-coding gene in the species Homo sapiens

D-2-hydroxyglutarate dehydrogenase, mitochondrial is an enzyme that in humans is encoded by the D2HGDH gene.

<span class="mw-page-title-main">L2HGDH</span> Protein-coding gene in the species Homo sapiens

L-2-hydroxyglutarate dehydrogenase, mitochondrial is an enzyme that in humans is encoded by the L2HGDH gene, also known as C14orf160, on chromosome 14.

<span class="mw-page-title-main">Alpha-aminoadipic semialdehyde synthase</span> Protein-coding gene in the species Homo sapiens

Alpha-aminoadipic semialdehyde synthase is an enzyme encoded by the AASS gene in humans and is involved in their major lysine degradation pathway. It is similar to the separate enzymes coded for by the LYS1 and LYS9 genes in yeast, and related to, although not similar in structure, the bifunctional enzyme found in plants. In humans, mutations in the AASS gene, and the corresponding alpha-aminoadipic semialdehyde synthase enzyme are associated with familial hyperlysinemia. This condition is inherited in an autosomal recessive pattern and is not considered a particularly negative condition, thus making it a rare disease.

<span class="mw-page-title-main">Aldehyde dehydrogenase 6 family, member A1</span> Protein-coding gene in the species Homo sapiens

Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial (MMSDH) is an enzyme that in humans is encoded by the ALDH6A1 gene.

<span class="mw-page-title-main">Tricarboxylate transport protein, mitochondrial</span> Mammalian protein found in Homo sapiens

Tricarboxylate transport protein, mitochondrial, also known as tricarboxylate carrier protein and citrate transport protein (CTP), is a protein that in humans is encoded by the SLC25A1 gene. SLC25A1 belongs to the mitochondrial carrier gene family SLC25. High levels of the tricarboxylate transport protein are found in the liver, pancreas and kidney. Lower or no levels are present in the brain, heart, skeletal muscle, placenta and lung.

α-Hydroxyglutaric acid Chemical compound

α-Hydroxyglutaric acid is an alpha hydroxy acid form of glutaric acid.

<span class="mw-page-title-main">ALDH7A1</span> Protein-coding gene in the species Homo sapiens

Aldehyde dehydrogenase 7 family, member A1, also known as ALDH7A1 or antiquitin, is an enzyme that in humans is encoded by the ALDH7A1 gene. The protein encoded by this gene is a member of subfamily 7 in the aldehyde dehydrogenase gene family. These enzymes are thought to play a major role in the detoxification of aldehydes generated by alcohol metabolism and lipid peroxidation. This particular member has homology to a previously described protein from the green garden pea, the 26g pea turgor protein. It is also involved in lysine catabolism that is known to occur in the mitochondrial matrix. Recent reports show that this protein is found both in the cytosol and the mitochondria, and the two forms likely arise from the use of alternative translation initiation sites. An additional variant encoding a different isoform has also been found for this gene. Mutations in this gene are associated with pyridoxine-dependent epilepsy. Several related pseudogenes have also been identified.

<span class="mw-page-title-main">IDH1</span> Protein-coding gene in the species Homo sapiens

Isocitrate dehydrogenase 1 (NADP+), soluble is an enzyme that in humans is encoded by the IDH1 gene on chromosome 2. Isocitrate dehydrogenases catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. These enzymes belong to two distinct subclasses, one of which uses NAD+ as the electron acceptor and the other NADP+. Five isocitrate dehydrogenases have been reported: three NAD+-dependent isocitrate dehydrogenases, which localize to the mitochondrial matrix, and two NADP+-dependent isocitrate dehydrogenases, one of which is mitochondrial and the other predominantly cytosolic. Each NADP+-dependent isozyme is a homodimer. The protein encoded by this gene is the NADP+-dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. It contains the PTS-1 peroxisomal targeting signal sequence. The presence of this enzyme in peroxisomes suggests roles in the regeneration of NADPH for intraperoxisomal reductions, such as the conversion of 2,4-dienoyl-CoAs to 3-enoyl-CoAs, as well as in peroxisomal reactions that consume 2-oxoglutarate, namely the alpha-hydroxylation of phytanic acid. The cytoplasmic enzyme serves a significant role in cytoplasmic NADPH production. Alternatively spliced transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Sep 2013]

<span class="mw-page-title-main">DHTKD1</span> Protein-coding gene in the species Homo sapiens

Dehydrogenase E1 and transketolase domain containing 1 is a protein that in humans is encoded by the DHTKD1 gene. This gene encodes a component of a mitochondrial 2-oxoglutarate-dehydrogenase-complex-like protein involved in the degradation pathways of several amino acids, including lysine. Mutations in this gene are associated with 2-aminoadipic 2-oxoadipic aciduria and Charcot-Marie-Tooth Disease Type 2Q.

In enzymology, a D-2-hydroxyglutarate dehydrogenase is an enzyme that catalyzes the chemical reaction

Metabolite damage can occur through enzyme promiscuity or spontaneous chemical reactions. Many metabolites are chemically reactive and unstable and can react with other cell components or undergo unwanted modifications. Enzymatically or chemically damaged metabolites are always useless and often toxic. To prevent toxicity that can occur from the accumulation of damaged metabolites, organisms have damage-control systems that:

  1. Reconvert damaged metabolites to their original, undamaged form
  2. Convert a potentially harmful metabolite to a benign one
  3. Prevent damage from happening by limiting the build-up of reactive, but non-damaged metabolites that can lead to harmful products

References

  1. Reference, Genetics Home. "2-hydroxyglutaric aciduria". Genetics Home Reference. Retrieved 25 January 2017.
  2. "L-2-hydroxyglutaric aciduria | Genetic and Rare Diseases Information Center (GARD) – an NCATS Program". rarediseases.info.nih.gov. Retrieved 25 January 2017.
  3. "2-hydroxyglutaric aciduria: MedlinePlus Genetics". medlineplus.gov. Retrieved 2022-07-17.
  4. Kranendijk, Martijn; Struys, Eduard A.; Salomons, Gajja S.; Van der Knaap, Marjo S.; Jakobs, Cornelis (2012). "Progress in understanding 2-hydroxyglutaric acidurias". Journal of Inherited Metabolic Disease. 35 (4): 571–587. doi:10.1007/s10545-012-9462-5. ISSN   0141-8955. PMC   3388262 . PMID   22391998.
  5. Seijo-Martinez M, Navarro C, Castro del Rio M, Vila O, Puig M, Ribes A, Butron M (2005). "L-2-hydroxyglutaric aciduria: clinical, neuroimaging, and neuropathological findings". Arch. Neurol. 62 (4): 666–670. doi: 10.1001/archneur.62.4.666 . PMID   15824270.
  6. Topçu M, Jobard F, Halliez S, et al. (November 2004). "L-2-Hydroxyglutaric aciduria: identification of a mutant gene C14orf160, localized on chromosome 14q22.1". Hum. Mol. Genet. 13 (22): 2803–11. doi: 10.1093/hmg/ddh300 . PMID   15385440.
  7. Van Schaftingen, E.; Rzem, R.; Veiga-da-Cunha, M. (2009-04-01). "L: -2-Hydroxyglutaric aciduria, a disorder of metabolite repair". Journal of Inherited Metabolic Disease. 32 (2): 135–142. doi:10.1007/s10545-008-1042-3. ISSN   1573-2665. PMID   19020988. S2CID   27702186.
  8. Nyhan WL, Shelton GD, Jakobs C, Holmes B, Bowe C, Curry CJ, Vance C, Duran M, Sweetman L (1995). "D-2-hydroxyglutaric aciduria". J. Child Neurol. 10 (2): 137–142. doi:10.1177/088307389501000216. PMID   7782605. S2CID   19395651.
  9. Struys EA, Salomons GS, Achouri Y, Van Schaftingen E, Grosso S, Craigen WJ, Verhoeven NM, Jakobs C (Jan 2005). "Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria". Am J Hum Genet. 76 (2): 358–60. doi:10.1086/427890. PMC   1196381 . PMID   15609246.
  10. Kranendijk M, Struys EA, van Schaftingen E, et al. (2010). "IDH2 mutations in patients with D-2-hydroxyglutaric aciduria". Science. 330 (6002): 336. Bibcode:2010Sci...330..336K. doi:10.1126/science.1192632. PMID   20847235. S2CID   206527781.
  11. Muntau A, Röschinger W, Merkenschlager A, van der Knaap MS, et al. (2000). "Combined D-2- and L-2-hydroxyglutaric aciduria with neonatal onset encephalopathy: a third biochemical variant of 2-hydroxyglutaric aciduria?". Neuropediatrics. 31 (3): 137–40. doi:10.1055/s-2000-7497. PMID   10963100.
  12. Nota B; et al. (2013). "Deficiency in SLC25A1, Encoding the Mitochondrial Citrate Carrier, Causes Combined D-2- and L-2-Hydroxyglutaric Aciduria". The American Journal of Human Genetics. 92 (4): 627–631. doi:10.1016/j.ajhg.2013.03.009. PMC   3617390 . PMID   23561848.
  13. RESERVED, INSERM US14 -- ALL RIGHTS. "Orphanet: D 2 hydroxyglutaric aciduria". www.orpha.net. Retrieved 25 January 2017.